The Solution is the Solution: Data-Driven Elucidation of Solution-to-Device Feature Transfer for π-Conjugated Polymer Semiconductors
More Like this
-
There has been much work on exhibiting mechanisms that implement various bargaining solutions, in particular, the Kalai-Smorodinsky solution \cite{moulin1984implementing} and the Nash Bargaining solution. Another well-known and axiomatically well-studied solution is the lexicographic maxmin solution. However, there is no mechanism known for its implementation. To fill this gap, we construct a mechanism that implements the lexicographic maxmin solution as the unique subgame perfect equilibrium outcome in the n-player setting. As is standard in the literature on implementation of bargaining solutions, we use the assumption that any player can grab the entire surplus. Our mechanism consists of a binary game tree, with each node corresponding to a subgame where the players are allowed to choose between two outcomes. We characterize novel combinatorial properties of the lexicographic maxmin solution which are crucial to the design of our mechanism.more » « less
-
null (Ed.)A bstract There are well-known criteria on the potential and field-space geometry for determining if slow-roll, slow-turn, multi-field inflation is possible. However, even though it has been a topic of much recent interest, slow-roll, rapid-turn inflation only has such criteria in the restriction to two fields. In this work, we generalize the two-field, rapid-turn inflationary attractor to an arbitrary number of fields. We quantify a limit, which we dub extreme turning , in which rapid-turn solutions may be found efficiently and develop methods to do so. In particular, simple results arise when the covariant Hessian of the potential has an eigenvector in close alignment with the gradient — a situation we find to be common and we prove generic in two-field hyperbolic geometries. We verify our methods on several known rapid-turn models and search two type-IIA constructions for rapid-turn trajectories. For the first time, we are able to efficiently search for these solutions and even exclude slow-roll, rapid-turn inflation from one potential.more » « less