skip to main content


Title: Tunneling Nanotubes between Cells Migrating in ECM Mimicking Fibrous Environments
Tunneling nanotubes (TNTs) comprise a unique class of actin-rich nanoscale membranous protrusions. They enable long-distance intercellular communication and may play an integral role in tumor formation, progression, and drug resistance. TNTs are three-dimensional, but nearly all studies have investigated them using two-dimensional cell culture models. Here, we applied a unique 3D culture platform consisting of crosshatched and aligned fibers to fabricate synthetic suspended scaffolds that mimic the native fibrillar architecture of tumoral extracellular matrix (ECM) to characterize TNT formation and function in its native state. TNTs are upregulated in malignant mesothelioma; we used this model to analyze the biophysical properties of TNTs in this 3D setting, including cell migration in relation to TNT dynamics, rate of TNT-mediated intercellular transport of cargo, and conformation of TNT-forming cells. We found that highly migratory elongated cells on aligned fibers formed significantly longer but fewer TNTs than uniformly spread cells on crossing fibers. We developed new quantitative metrics for the classification of TNT morphologies based on shape and cytoskeletal content using confocal microscopy. In sum, our strategy for culturing cells in ECM-mimicking bioengineered scaffolds provides a new approach for accurate biophysical and biologic assessment of TNT formation and structure in native fibrous microenvironments.  more » « less
Award ID(s):
1762634
NSF-PAR ID:
10337868
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Cancers
Volume:
14
Issue:
8
ISSN:
2072-6694
Page Range / eLocation ID:
1989
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The extracellular matrix (ECM) is a complex 3D framework of macromolecules, which regulate cell bioactivity via chemical and physical properties. The ECM's physical properties, including stiffness and physical constraints to cell shape, regulate actomyosin cytoskeleton contractions, which induce signaling cascades influencing gene expression and cell fate. Engineering such bioactivity, a.k.a., mechanotransduction, has been mainly achieved by 2D platforms such as micropatterns. These platforms cause cytoskeletal contractions with apico‐basal polarity and can induce mechanotransduction that is unnatural to most cells in native ECMs. An effective method to engineer mechanotransduction in 3D is needed. This work creates FiberGel, a 3D artificial ECM comprised of sub‐cellular scale fibers. These microfibers can crosslink into defined microstructures with the fibers' diameter, stiffness, and alignment independently tuned. Most importantly, cells are blended amongst the fibers prior to crosslinking, leading to homogeneously cellularized scaffolds. Studies using mesenchymal stem cells showed that the microfibers' diameter, stiffness, and alignment regulate 3D cell shape and the nuclei translocation of transcriptional coactivators YAP/TAZ (yes‐associated protein/transcriptional coactivator), which enables the control of cell differentiation and tissue formation. A novel technology based on repeated stretching and folding is created to synthesize FiberGel. This 3D platform can significantly contribute to mechanotransduction research and applications.

     
    more » « less
  2. In tissues and organs, the extracellular matrix (ECM) helps maintain inter- and intracellular architectures that sustain the structure–function relationships defining physiological homeostasis. Combining fiber scaffolds and cells to form engineered tissues is a means of replicating these relationships. Engineered tissues' fiber scaffolds are designed to mimic the topology and chemical composition of the ECM network. Here, we asked how cells found in the heart compare in their propensity to align their cytoskeleton and self-organize in response to topological cues in fibrous scaffolds. We studied cardiomyocytes, valvular interstitial cells, and vascular endothelial cells as they adapted their inter- and intracellular architectures to the extracellular space. We used focused rotary jet spinning to manufacture aligned fibrous scaffolds to mimic the length scale and three-dimensional (3D) nature of the native ECM in the muscular, valvular, and vascular tissues of the heart. The representative cardiovascular cell types were seeded onto fiber scaffolds and infiltrated the fibrous network. We measured different cell types' propensity for cytoskeletal alignment in response to fiber scaffolds with differing levels of anisotropy. The results indicated that valvular interstitial cells on moderately anisotropic substrates have a higher propensity for cytoskeletal alignment than cardiomyocytes and vascular endothelial cells. However, all cell types displayed similar levels of alignment on more extreme (isotropic and highly anisotropic) fiber scaffold organizations. These data suggest that in the hierarchy of signals that dictate the spatiotemporal organization of a tissue, geometric cues within the ECM and cellular networks may homogenize behaviors across cell populations and demographics.

     
    more » « less
  3. Abstract

    Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex‐specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super‐healer Murphy Roths Large (MRL/MpJ) mouse strain. We have previously shown that the scarless healing capacity of MRL/MpJ patellar tendons is associated with sexually dimorphic regulation of gene expression for pathways involved in fibrosis, cell migration, adhesion, and extracellular matrix (ECM) remodeling following an acute mid‐substance injury. Thus, we hypothesized that MRL/MpJ scarless tendon healing is mediated by sex‐specific and temporally distinct orchestration of cell–ECM interactions. Accordingly, the present study comparatively evaluated MRL/MpJ tendon cells on two‐dimensional (2D; glass) and scaffold platforms to examine cell behavior under biochemical and topographical cues associated with tendon homeostasis and healing. Female MRL/MpJ cells showed reduced 2D migration and spreading area accompanied by enhanced mechanosensing, ECM alignment, and fibronectin‐mediated cell proliferation compared to male MRL/MpJ cells. Interestingly, female MRL/MpJ cells cultured on isotropic scaffolds showed diminished cell–ECM organization compared to male MRL/MpJ cells. Lastly, MRL/MpJ cells elicited enhanced cytoskeletal elongation and alignment, ECM deposition and organization, and connexin 43‐mediated intercellular communication compared to male B6 cells, regardless of culture condition or sex. These results provide insight into the cellular features conserved within the MRL/MpJ phenotype and potential sex‐specific targets for the development of more equitable therapeutics.

     
    more » « less
  4. Abstract

    Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short‐range gradients in fiber alignment that result from cell‐induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub‐millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that human umbilical vein endothelial cells (HUVECs) exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA‐MB‐231 breast cancer cell aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user‐friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix (ECM), with broad applicability in healthy and diseased tissue environments.

     
    more » « less
  5. Abstract

    Extracellular matrix (ECM) proteins, and most prominently, fibronectin (Fn), are routinely used in the form of adsorbed pre‐coatings in an attempt to create a cell‐supporting environment in both two‐ and three‐dimensional cell culture systems. However, these protein coatings are typically deposited in a form which is structurally and functionally distinct from the ECM‐constituting fibrillar protein networks naturally deposited by cells. Here, the cell‐free and scalable synthesis of freely suspended and mechanically robust three‐dimensional (3D) networks of fibrillar fibronectin (fFn) supported by tessellated polymer scaffolds is reported. Hydrodynamically induced Fn fibrillogenesis at the three‐phase contact line between air, an Fn solution, and a tessellated scaffold microstructure yields extended protein networks. Importantly, engineered fFn networks promote cell invasion and proliferation, enable in vitro expansion of primary cancer cells, and induce an epithelial‐to‐mesenchymal transition in cancer cells. Engineered fFn networks support the formation of multicellular cancer structures cells from plural effusions of cancer patients. With further work, engineered fFn networks can have a transformative impact on fundamental cell studies, precision medicine, pharmaceutical testing, and pre‐clinical diagnostics.

     
    more » « less