skip to main content


Title: Engineering Liver Extracellular Matrix Nanofibers to Functionally Mature iPSC-derived Liver Cells
Drug-induced liver injury (DILI) remains a leading cause of drug attrition and acute liver failures, partly due to the inadequacy of animal models to accurately predict human clinical outcomes, which necessitates the utilization of in vitro models of the human liver. However, primary human hepatocytes (PHHs) are in short supply for routine drug screening. In contrast, induced pluripotent stem cells (iPSCs)-derived hepatocyte-like cells (HLCs) are a nearly unlimited cell source but display a fetal-like (versus adult-like) phenotype when differentiated using conventional protocols on tissue culture plastic or glass adsorbed with 2D extracellular matrix (ECM) proteins. Electrospinning can produce porous nanoscale 3D fibers that have a large surface area and present a high density of receptor ligands to modulate cell phenotype. However, the application of electrospinning to generate 3D liver-derived ECM substrates for HLC differentiation remains unexplored. Therefore, here we developed methods to a) electrospin nanofibers of different porosities and diameters using porcine liver ECM (PLECM) with or without type I collagen and b) use these fibers to determine functional modulation in iPSC-derived HLCs while using PHHs as a control cell type relative to conventional adsorbed ECM substrates.  more » « less
Award ID(s):
1933552
NSF-PAR ID:
10382011
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual Meeting of the Biomedical Engineering Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Owing to significant differences across species in liver functions, in vitro human liver models are used for screening the metabolism and toxicity of compounds, modeling diseases, and cell‐based therapies. However, the extracellular matrix (ECM) scaffold used for such models often does not mimic either the complex composition or the nanofibrous topography of native liver ECM. Thus, here novel methods are developed to electrospin decellularized porcine liver ECM (PLECM) and collagen I into nano‐ and microfibers (≈200–1000 nm) without synthetic polymer blends. Primary human hepatocytes (PHHs) on nanofibers in monoculture or in coculture with nonparenchymal cells (3T3‐J2 embryonic fibroblasts or primary human liver endothelial cells) display higher albumin secretion, urea synthesis, and cytochrome‐P450 1A2, 2A6, 2C9, and 3A4 enzyme activities than on conventionally adsorbed ECM controls. PHH functions are highest on the collagen/PLECM blended nanofibers (up to 34‐fold higher CYP3A4 activity relative to adsorbed ECM) for nearly 7 weeks in the presence of the fibroblasts. In conclusion, it is shown for the first time that ECM composition and topography synergize to enhance and stabilize PHH functions for several weeks in vitro. The nanofiber platform can prove useful for the above applications and to elucidate cell‐ECM interactions in the human liver.

     
    more » « less
  2. Abstract

    Bone marrow derived mesenchymal stem cells (BM‐MSC) is a promising alternative cell source to primary hepatocytes because of their ability to differentiate into hepatocyte‐like cells. However, their inability to differentiate efficiently and potential to turn into myofibroblasts restrict their applications. This study developed a plate coating from the liver extracellular matrix (ECM) and investigated its ability in facilitating the BM‐MSCs proliferation, hepatic differentiation, and hepatocyte‐specific functions duringin vitroculture. After 28‐day culture, BM‐MSCs on the ECM coating showed hepatocyte‐like morphology, and certain cells took up low‐density lipoprotein. Synthesis of albumin, urea, and anti‐alpha‐fetoprotein, as well as expression of certain hepatic markers, in cells cultured on ECM were higher than cells cultured on non‐coated and Matrigelcoated plates. mRNA levels of CYP3A4, albumin, CK18, and CYP7A1 in cells on ECM coating were significantly higher than cells cultured on the non‐coating environment. In conclusion, viability and hepatogenic differentiation of BM‐MSCs cultured on both Matrigel and ECM coating were significantly enhanced compared with those cultured on non‐coated plates. Moreover, the liver ECM coating induced additional metabolic functions relative to the Matrigel coating. The liver ECM hydrogel preserves the natural composition, promotes simple gelling, induces efficient stem cell hepatogenic differentiation, and may have uses as an injectable intermedium for hepatocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 829–838, 2018.

     
    more » « less
  3.  
    more » « less
  4. 2938 Using a Human Liver Tissue Equivalent (hLTE) Platform to Define the Functional Impact of Liver-Directed AAV Gene Therapy 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster II Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Clinically Relevant, Diseases, Gene Therapy, Therapies Sunday, December 12, 2021, 6:00 PM-8:00 PM Ritu M Ramamurthy1*, Wen Ting Zheng2*, Sunil George, PhD1*, Meimei Wan1*, Yu Zhou, PhD1*, Baisong Lu, PhD1*, Colin E Bishop, PhD1*, Anthony Atala, M.D.1*, Christopher D Porada, PhD1* and M. Graca Almeida-Porada, MD3 1Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 2Massachusetts Institute of Technology, Cambridge, MA 3Fetal Research and Therapy Program, Wake Forest Institute For Regenerative Medicine, Winston-Salem, NC Clinical trials employing AAV vectors for hemophilia A have been hindered by unanticipated immunological and/or inflammatory responses in some of the patients. Also, these trials have often yielded lower levels of transgene expression than were expected based upon preclinical studies, highlighting the poor correlation between the transduction efficiency observed in traditional 2D cultures of primary cells in vitro, and that observed in those same cell types in vivo. It has been also recognized that there are marked species-specific differences in AAV-vector tropism, raising the critical question of the accuracy with which various animal models will likely predict tropism/vector transduction efficiency, and eventual treatment success in humans. Human liver tissue equivalents (hLTEs) are comprised of major cell types in the liver in physiologically relevant frequencies and possess the ability to recapitulate the biology and function of native human liver. Here, we hypothesize that hLTEs can be used as a better model to predict the efficacy and safety of AAV gene therapy in humans. We fabricated hLTEs using 75% hepatocytes, 10% stellate cells, 10% Kupffer cells, and 5% liver sinusoid-derived endothelial cells in 96-well Elplasia plates with 79 microwells per well. hLTEs were transduced at an MOI of 105vg/cell, on the day of fabrication, with the clinically relevant serotypes AAV5 (hLTE-5) or AAV3b (hLTE-3b), both encoding a GFP reporter. After 4 days of self-aggregation, live/dead assay was performed to confirm viability. Non-transduced hLTEs served as negative controls (hLTE(-)), and hLTEs exposed to 20 mM acetaminophen were used as positive controls for liver inflammation/damage. Incucyte® Live-Cell Imaging system was used to track the aggregation and GFP expression of hLTEs. Over the course of the next 5 days, media was collected to determine hepatic functionality, RNA was isolated to assess dysregulation of genes involved in inflammation and fibrosis, DNA was isolated to determine whether AAV vectors integrate into the genome of human hepatocytes and, if so, to define the frequency at which this occurs and the genomic loci of integration, and hLTEs were fixed and processed at appropriate times for histological analyses and transmission electron microscopy (TEM). TEM analysis revealed that all groups exhibited microvilli and bile-canaliculus-like structures, demonstrating the formation of a rudimentary biliary system and, more importantly, proving that hLTEs resemble native liver structure. Incucyte® imaging showed that AAV5 and AAV3b transduction impaired formation of hLTEs (57.57 ± 2.42 and 24.57 ± 4.01 spheroids/well, respectively) in comparison with hLTE(-) (74.86 ± 3.8 spheroids/well). Quantification of GFP expression demonstrated that AAV5 yielded the most efficient transduction of hLTEs (fold change in GFP expression compared to control: 2.73 ± 0.09 and 1.19 ± 0.03 for hLTE-5 and hLTE-3b, respectively). Chromogenic assays showed decreased urea production in cell culture supernatants of AAV transduced groups compared to the non-transduced hLTEs on days 6 and 10 of culture, demonstrating decreased hepatocyte functionality. However, ALT and AST levels were similar in all groups. On day 10, hLTEs were either used for RNA isolation or fixed in 4% PFA and processed for histology. Masson’s Trichrome and Alcian Blue/Sirius Red staining was performed to detect fibrosis, which was then quantified using ImageJ. These analyses showed no significant increase in fibrosis in either hLTE-5 or hLTE-3b compared to hLTE(-). Nevertheless, RT2 PCR Array for Human Fibrosis detected dysregulation of several genes involved in fibrosis/inflammation in both hLTE-5 and hLTE-3b (16/84 and 26/84, respectively). In conclusion, data collected thus far show successful recapitulation of native liver biology and demonstrate that AAV5 transduces hLTEs more efficiently than AAV3b. However, impaired self-aggregation and decreased hepatocyte functionality was observed in both AAV-transduced groups. Studies to address the incidence and location(s) of AAV integration are ongoing. We have thus shown that the hLTE system can provide critical new knowledge regarding the efficacy and safety of AAV gene therapy in the human liver. Disclosures: No relevant conflicts of interest to declare. 
    more » « less
  5. Abstract

    Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.

     
    more » « less