skip to main content

Title: Changing an Electrical and Computer Engineering Department Culture from the Bottom Up: Action Plans Generated from Faculty Interviews
Changing Electrical and Computer Engineering Department Culture from the Bottom Up: Action Plans Generated from Faculty Interviews We prefer a Lessons Learned Paper. In a collaborative effort between a RED: Revolutionizing Engineering and Computer Science Departments (RED) National Science Foundation grant awarded to an electrical and computer engineering department (ECpE) and a broader, university-wide ADVANCE program, ECpE faculty were invited to participate in focus groups to evaluate the culture of their department, to further department goals, and to facilitate long-term planning. Forty-four ECpE faculty members from a large Midwestern university participated in these interviews, which were specifically focused on departmental support and challenges, distribution of resources, faculty workload, career/family balance, mentoring, faculty professional development, productivity, recruitment, and diversity. Faculty were interviewed in groups according to rank, and issues important to particular subcategories of faculty (e.g., rank, gender, etc.) were noted. Data were analyzed by a social scientist using the full transcript of each interview/focus group and the NVivo 12 Qualitative Research Software Program. She presented the written report to the entire faculty. Based on the results of the focus groups, the ECpE department developed an action plan with six main thrusts for improving departmental culture and encouraging departmental change and more » transformation. 1. Department Interactions – Encourage open dialogue and consider department retreats. Academic areas should be held accountable for the working environment and encouraged to discuss department-related issues. 2. Mentoring, Promotion, and Evaluation – Continue mentoring junior faculty. Improve the clarity of P&T operational documents and seek faculty input on the evaluation system. 3. Teaching Loads – Investigate teaching assistant (TA) allocation models and explore models for teaching loads. Develop a TA performance evaluation system and return TA support to levels seen in the 2010 timeframe. Improvements to teaching evaluations should consider differential workloads, clarifying expectations for senior advising, and hiring more faculty for undergraduate-heavy areas. 4. Diversity, Equity, and Inclusion – Enact an explicit focus on diversity in hiring. Review departmental policies on inclusive teaching and learning environments. 5. Building – Communicate with upper administration about the need for a new building. Explore possibilities for collaborations with Computer Science on a joint building. 6. Support Staff – Increase communication with the department regarding new service delivery models. Request additional support for Human Resources, communications, and finance. Recognize staff excellence at the annual department banquet and through college/university awards. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
2020 ASEE Virtual Annual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. The percentages of women in undergraduate electrical and computer engineering programs at Iowa State University averages below the national average. An external assessment of diversity and inclusion provided an impetus for faculty, staff and administrators to discuss issues, focus on specific areas, and collaborate on planning. In particular, the department has teamed up with the university's Program for Women in Science and Engineering to better integrate their programs with departmental activities. This has resulted in an enhanced student experience model being designed for undergraduate ECE women. The model leverages effective practices including learning communities, leadership and professional development, academic support and advising for the ISU Engineering Basic Program, academic preparation for the ECE field, and state and national resources for inclusive ECE career awareness, recruiting and teaching. The WI-ECSEL Initiative has been designed to improve diversity and inclusion in Iowa State's electrical, computer, and software engineering programs; improve educational pathways including transfer transitions from community colleges; provide a supportive and integrated student experience; establish a community of practice for faculty; and use research to inform practice.
  2. With funding from a National Science Foundation (NSF) IUSE/PFE: Revolutionizing Engineering and Computer Science Departments (IUSE/PFE: RED) grant, our vision is to focus on faculty development and culture change to reduce the effort and risk experienced by faculty in implementing pedagogical changes and to increase iterative, data-driven changes in teaching. Our project, called Teams for Creating Opportunities for Revolutionizing the Preparation of Students (TCORPS), is an adaptation of the “Additive innovation” model proposed by Arizona State University [1]. The Department of Mechanical Engineering at Texas A&M University has a long legacy of individualistic and---in many cases---a fixed mindset [2] approach to teaching with the expectation of top-down management of change. The goal of our project is to evolve the departmental culture to a bottom-up team structure where the faculty embrace an innovative mindset and extend an iterative build-test-learn method of the maker culture [3] that was formalized by the Lean Startup [4] approach. Faculty already have investigative and experimentation-driven processes in place for research and a keen understanding of data to support their hypotheses. We aim to leverage this preexisting strength and knowledge by extending it to the faculty-led, small-scale, iterative improvement of curriculum and pedagogy
  3. A 2019 report from the National Academies on Minority Serving Institutions (MSIs) concluded that MSIs need to change their culture to successfully serve students with marginalized racial and/or ethnic identities. The report recommends institutional responsiveness to meet students “where they are,” metaphorically, creating supportive campus environments and providing tailored academic and social support structures. In recent years, the faculty, staff, and administrators at California State University, Los Angeles have made significant efforts to enhance student success through multiple initiatives including a summer bridge program, first-year in engineering program, etc. However, it has become clear that more profound changes are needed to create a culture that meets students “where they are.” In 2020, we were awarded NSF support for Eco-STEM, an initiative designed to change a system that demands "college-ready" students into one that is "student-ready." Aimed at shifting the deficit mindset prevailing in engineering education, the Eco-STEM project embraces an asset-based ecosystem model that thinks of education as cultivation, and ideas as seeds we are planting, rather than a system of standards and quality checks. This significant paradigm and culture transformation is accomplished through: 1) The Eco-STEM Faculty Fellows’ Community of Practice (CoP), which employs critically reflective dialogue[ ][ ]more »to enhance the learning environment using asset-based learner-centered instructional approaches; 2) A Leadership CoP with department chairs and program directors that guides cultural change at the department/program level; 3) A Facilitators’ CoP that prepares facilitators to lead, sustain, update, and expand the Faculty and Leadership CoPs; 4) Reform of the teaching evaluation system to sustain the cultural changes. This paper presents the progress and preliminary findings of the Eco-STEM project. During the first project year, the project team formulated the curriculum for the Faculty CoP with a focus on inclusive pedagogy, community cultural wealth, and community building, developed a classroom peer observation tool to provide formative data for teaching reflection, and designed research inquiry tools. The latter investigates the following research questions: 1) To what extent do the Eco-STEM CoPs effectively shift the mental models of participants from a factory-like model to an ecosystem model of education? 2) To what extent does this shift support an emphasis on the assets of our students, faculty, and staff members and, in turn, allow for enhanced motivation, excellence and success? 3) To what extent do new faculty assessment tools designed to provide feedback that reflects ecosystem-centric principles and values allow for individuals within the system to thrive? In Fall 2021, the first cohort of Eco-STEM Faculty Fellows were recruited, and rich conversations and in-depth reflections in our CoP meetings indicated Fellows’ positive responses to both the CoP curriculum and facilitation practices. This paper offers a work-in-progress introduction to the Eco-STEM project, including the Faculty CoP, the classroom peer observation tool, and the proposed research instruments. We hope this work will cultivate broader conversations within the engineering education research community about cultural change in engineering education and methods towards its implementation.« less
  4. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, anmore »engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches.« less
  5. Three diverse public universities(North Carolina State University, University of North Carolina Charlotte, and North Carolina Agricultural and Technical State University)have adapted and implemented an institutional change model that proposes five core elements for achieving cultural change in colleges and universities to increase the percentage of underrepresented minority (URM) faculty in STEM fields. Since URM doctoral students spend most of their time exposed to the culture of their academic department as they take classes, conduct research, and interact with departmental faculty, staff, and other graduate students, the climate they experience and the support they receive at the departmental level can have a major impact on their success. When interventions address students directly, once they graduate, there may be no lasting change in the department. However, when faculty attitudes and mentoring practices along with departmental processes and procedures change, the changes are likely to be more sustainable. Using institutional theory as the analytical lens, the purpose of this paper is to examine how one collaborative project implements a faculty-led institutional change model for diversifying the STEM professoriate. Each participating doctoral granting department has a volunteer faculty member interested in URM success designated as a Faculty Fellow. The Fellow receives programmatic support tomore »increase their understanding of the issues facing URMs in doctoral programs and assessment support to identify the departmental practices that may be hindering URM student success. Together with their department head and director of graduate programs, they work with the departmental faculty to understand graduate student pathways, identify practices and policies that promote success, and diagnose trouble spots. Based on this study of the graduate student experience in their own department, the Fellow develops a departmental initiative designed to address departmental weaknesses. The faculty as a whole develop a departmental diversity plan to build these insights into departmental practices and procedures. This paper will explore the process of developing the departmental initiatives and diversity plans as well as report on some initiatives and plans developed. The benefits and drawbacks of the approach are discussed along with best practices identified to this point« less