skip to main content


Search for: All records

Award ID contains: 1623125

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This Research-to-Practice Full Paper describes the implementation of integrated reflective activities in two computer engineering courses. Reflective activities contribute to student learning and professional development. Instructional team members have been examining the need and opportunities to deepen learning by integrating reflective activities into problem-solving experiences. We implemented reflective activities using a coordinated framework for a modified Kolbian cycle. The framework consists of reflection-for-action, reflection-in-action, reflection-on-action, and composted reflections. Reflection-for-action takes place before the experience and involves thinking about and planning future actions. Reflection-in-action takes place during the experience while actively problem-solving. Reflection-on-action takes place after the problem-solving experience. Composting involves revisiting past experiences and reflections to inform future planning. We describe the reflective activities in the context of the coordinated framework, including strategies to support reflection and increase the likelihood of engagement and success. We conclude with an analysis of the activities using the CPREE framework for reflection pathways. 
    more » « less
  2. This Research-to-Practice Full Paper presents the redesign of a course project to promote student professional formation in engineering in the Electrical and Computer Engineering Department at Iowa State University. This is part of a larger effort to redesign core courses in the sophomore and junior years through a collaborative instructional model and pedagogical approaches that promote professional formation. A required sophomore course on embedded computer systems has been assessed and revised over multiple semesters. The redesign of the project was initiated with the purpose of promoting student professional formation, interest, autonomy and innovation, and it was undertaken using a collaborative process. This paper describes the course, final project, redesign process, assessment, results and future work. Several conclusions from the research may be useful to other educators. A small change to the course project yielded positive effects in interest and autonomy and may influence longer term effects of the project. There was evidence of difference in engagement with the project. The difference observed was not only due to option selected by students but why students selected the option. 
    more » « less
  3. Changing Electrical and Computer Engineering Department Culture from the Bottom Up: Action Plans Generated from Faculty Interviews We prefer a Lessons Learned Paper. In a collaborative effort between a RED: Revolutionizing Engineering and Computer Science Departments (RED) National Science Foundation grant awarded to an electrical and computer engineering department (ECpE) and a broader, university-wide ADVANCE program, ECpE faculty were invited to participate in focus groups to evaluate the culture of their department, to further department goals, and to facilitate long-term planning. Forty-four ECpE faculty members from a large Midwestern university participated in these interviews, which were specifically focused on departmental support and challenges, distribution of resources, faculty workload, career/family balance, mentoring, faculty professional development, productivity, recruitment, and diversity. Faculty were interviewed in groups according to rank, and issues important to particular subcategories of faculty (e.g., rank, gender, etc.) were noted. Data were analyzed by a social scientist using the full transcript of each interview/focus group and the NVivo 12 Qualitative Research Software Program. She presented the written report to the entire faculty. Based on the results of the focus groups, the ECpE department developed an action plan with six main thrusts for improving departmental culture and encouraging departmental change and transformation. 1. Department Interactions – Encourage open dialogue and consider department retreats. Academic areas should be held accountable for the working environment and encouraged to discuss department-related issues. 2. Mentoring, Promotion, and Evaluation – Continue mentoring junior faculty. Improve the clarity of P&T operational documents and seek faculty input on the evaluation system. 3. Teaching Loads – Investigate teaching assistant (TA) allocation models and explore models for teaching loads. Develop a TA performance evaluation system and return TA support to levels seen in the 2010 timeframe. Improvements to teaching evaluations should consider differential workloads, clarifying expectations for senior advising, and hiring more faculty for undergraduate-heavy areas. 4. Diversity, Equity, and Inclusion – Enact an explicit focus on diversity in hiring. Review departmental policies on inclusive teaching and learning environments. 5. Building – Communicate with upper administration about the need for a new building. Explore possibilities for collaborations with Computer Science on a joint building. 6. Support Staff – Increase communication with the department regarding new service delivery models. Request additional support for Human Resources, communications, and finance. Recognize staff excellence at the annual department banquet and through college/university awards. 
    more » « less
  4. This work-in-progress research paper explores the intersection of cross-functional teamwork and design thinking within the course design process through collaborative autoethnography. Collaborative autoethnography uses individual and dialogic reflections to provide a detailed and nuanced exploration of experiences within a culture (e.g., a course design team) and generate insights that might inform broader community of individuals who experience related cultures. In this study, we investigate how individual educators attempt to shape and are shaped by a unique team course design process in electrical and computer engineering. The participant-researchers in this study are three electrical and computer engineering faculty members and one engineering education researcher who have participated in a six-semester-long course redesign effort. The effort has emphasized building and utilizing a new cross-functional team approach, imbued with design thinking strategies, to support improved professional formation and student-centeredness within an embedded systems course for electrical and computer engineering students. In this study, data collection and analysis were integrated and iterative. This process engaged cycles of setting writing prompts, individual writing, group discussion and reflection, and setting new writing prompts. This process was repeated as participant-researchers and the team as a whole refined their insights, explored emergent topics, and connected their observations to external research and scholarship. The autoethnographic process is ongoing, but five themes have emerged that describe key features of the team course design process and experience: (1) uncertainty, (2) navigating the team, (3) navigating the self, (4) navigating the system, and (5) process. The paper features a collection of participant-researcher reflections related to these emergent themes. 
    more » « less
  5. The Role of Teaching Self-Efficacy in Electrical and Computer Engineering Faculty Teaching Satisfaction We request this abstract as a Research Paper. Electrical and computer engineering (ECpE) faculty are under increasing pressure to teach more undergraduate students, generate more funding, produce scholarship, and mentor more graduate students. Moreover, reduced budgets for universities result in an inability to replace faculty, minimal annual raises, and fewer teaching assistants, all of which affect faculty well-being at work. Well-being for faculty in general has been shown to relate to retention and faculty job performance. The present study focuses on one element of faculty well-being, namely faculty’s satisfaction with their teaching roles. Our first purpose was to examine if, in line with previous research, environmental supports (e.g., support of the university, department, colleagues, chair) contribute to ECSE faculty’s teaching satisfaction. The second purpose of the study was to anchor the study using self-determination theory (SDT; Ryan & Deci, 2000). SDT posits that satisfaction of three basic psychological needs would add additional predictive power beyond work environment supports to impact faculty well-being. The need measured in this paper was perceived competence specific to teaching (i.e., the need to perceive oneself as efficacious in teaching). Hierarchical regression models were estimated to answer the two research questions, namely (1) does environmental support significantly predict teaching satisfaction and (2) does teaching self-efficacy make a significant contribution to predicting teaching satisfaction beyond the predictive power of each environmental support variable? Four analyses were conducted with each environmental support variable entered in step one (university, department, colleague, chair) and with teaching self-efficacy added in step two of the regression analyses. In step one of all four analyses, the environmental supports separately each significantly predicted teaching satisfaction: (a) university support accounted for 26% of the variance in teaching satisfaction, (b) departmental support accounted for 59% of the variance in teaching satisfaction, (c) colleague support accounted for 23% of the variance in teaching satisfaction, and (d) chair support accounted for 28% of the variance in teaching satisfaction. In step two of all four analyses, adding teaching self-efficacy to this model significantly predicted additional variance in teaching satisfaction beyond each environmental support. After university support, it contributed an additional 21% of variance in teaching satisfaction. After departmental support, it contributed an additional 6% of the variance in teaching satisfaction. After colleague support, it contributed an additional 20% of variation in teaching satisfaction. After chair support, it accounted for an additional 9% of variation in teaching satisfaction. These results lead to the conclusion that these four environmental supports and teaching self-efficacy collectively made a large contribution (together explaining 43% to 65% of the variance) to the prediction of faculty teaching satisfaction. These effects are large enough for administrators to target these factors as they seek to increase ECpE faculty satisfaction with teaching, potentially leading to better teaching performance and retention. Consistent with SDT, these findings suggest that leadership would do well to prioritize efforts to support teaching self-efficacy within their departments as a means to enhance faculty well-being. 
    more » « less
  6. The Department of Electrical and Computer Engineering at a large Midwestern University is seeking to enhance undergraduate engineering education through a combination of programmatic efforts to create departmental change. Three distinct programs aim to transform ECE education through collaborative course design, enhancements to the department climate, and increases in the opportunities for underrepresented undergraduate engineering students. Due to the integrative and corresponding programmatic goals, it was vital to develop a unified evaluation in line with the program evaluation standards (Yarbrough, Shulha, Hopson, & Caruthers, 2011). Further, the interaction of multiple programs necessitated evaluating goal attainment at both the programmatic and departmental levels to determine not only the effects of individual programs but also to examine the broader effect of the interaction of multiple ongoing programmatic efforts to enhance engineering education. To facilitate this process, program team members developed comprehensive lists of ongoing activities designed to create change in the department within each program. Evaluators worked with the program teams to theme and cluster activities into similar groups. To understand how each cluster of activities was positioned to create departmental change and revolutionize engineering education, the evaluators and team members then attempted to identify how each cluster of activities worked as change strategies within the model by Henderson, Beach, and Finkelstein (2011). Thus, evaluators were able to identify over twenty distinct clusters of change activities working as change strategies within the four pillars of the change model: Curriculum and pedagogy, reflective teachers, policy, and shared vision. Positioning activities within this model allowed the evaluators and team members to 1) Better understand the broad scope of departmental activities and change strategies, 2) Identify strengths and challenges associated with their current efforts to transform engineering education within the department, and 3) Develop and integrate ongoing evaluation efforts to further understand both the programmatic and interactive effects of having multiple programs designed at facilitating departmental change and enhancing engineering education. The model for understanding department change and the approaches within that model that are being used to transform ECE education will be presented. We will further explain how the change model approach facilitated evaluating each program and the interactive effects of the combined programmatic efforts within the program evaluation standards of utility, feasibility, propriety, and accuracy (Yarbrough et al., 2011). Specific programmatic and interactive evaluation approaches will be discussed. References Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48(8), 952-984. Yarbrough, D. B., Shulha, L. M., Hopson, R. K., & Caruthers, F. A. (2011). The program evaluation standards: A guide for evaluators and evaluation users (3rd ed.). Thousand Oaks, CA: Sage. 
    more » « less
  7. This research paper investigates differences between course design heuristics that have been identified from three distinct data sources: course design team meetings, educator interviews, and course design papers. The study of heuristics used by experts in a discipline can have several practical benefits. They can (1) be employed as tools to scaffold expert behavior among novices, (2) be translated into processes to make challenging tasks more efficient, and (3) provide deeper insights into the nature of a domain, task, or discipline. While the study of heuristics remains robust across domains, they have demonstrated differences in format and have been identified through a variety of data types. The purpose of this study is to unpack differences in heuristics independently identified through different data types in order to better understand the role these types of data can play in understanding of heuristics for course design, especially as related to engineering courses. We utilized thematic analysis to explore the patterns of differences between heuristics identified from the three settings in three related, but distinct studies. Datasets includes audio-recordings from a four-month team course redesign process, five approximately hour-long educator interviews, and 183 peer-reviewed course design papers. We identified four themes representing differences across the datasets: (1) differences in volume/frequency of heuristics, (2) differences in breadth, specificity, and conceptualizations evidenced by categories of heuristics, (3) individual heuristic specificity, and (4) locus of clarity in heuristic examples. These results inform a set of four considerations for selecting data sources for studies of heuristics within engineering course design and other domains. 
    more » « less
  8. Engineering design thinking has become an important part of the educational discussion for both researchers and practitioners. Colleges and universities seek to graduate engineering students who can engage in the complex nature of combining both technical performance with design thinking skills. Prior research has shown that design thinking can be a solution for solving complicated technical and social issues in a holistic, adaptive way. However, little is known about how students make sense of their design thinking experiences and reconcile that into their perceptions of what it means to be a successful engineer. As part of a five-year National Science Foundation REvolutionizing Engineering and Computer Science Departments (NSF-RED) grant, this study highlights the experiences of students engaged in a course which has been redesigned to enhance student development through design thinking pedagogy. This case study sought to understand how electrical, computer, and software engineering students engage with design thinking and how that engagement shapes their perceptions of what success looks like. The case study was informed through observations of lecture and lab classroom contexts, interviews with students, and a review of relevant course documents. Participants met the following criteria: (a) were over the age of 18, (b) majoring in CES engineering, and (c) were currently enrolled in one of two courses currently undergoing redesign: a second-year electrical engineering course called Circuits or a second-year computer engineering course called Embedded Systems. Preliminary findings reveal that students engaged in the design thinking course described a disconnect between design thinking elements of the course and their perceptions of what it meant to be a successful electrical, computer, or software engineer. Although design thinking concepts focused on empathy-building and customer needs, it was often difficult for engineering students to see beyond the technical content of their course and conceptualize elements of design thinking as essential to their successful performance as engineers. This study bears significance to practitioners and researchers interested in (re)designing curriculum to meet the growing needs of innovation for today’s customer’s. Implications for policy and practice will be discussed to enhance the way that engineering programs, curricula, and workforce training are created. 
    more » « less
  9. This qualitative case study explored how undergraduate student perceptions of design thinking pedagogy influence computer, electrical, and software engineering identity. The study found that design thinking pedagogy reinforces recognition of an engineering identity, particularly for those from historically marginalized groups (i.e., women, people of color). Intentional implementation, including organization and framing of design thinking pedagogy, was an important foundation to foster student interest in the course and connection to their role as an engineer. 
    more » « less