Systems that augment sensory abilities are increasingly employing AI and machine learning (ML) approaches, with applications ranging from object recognition and scene description tools for blind users to sound awareness tools for d/Deaf users. However, unlike many other AI-enabled technologies these systems provide information that is already available to non-disabled people. In this paper, we discuss unique AI fairness challenges that arise in this context, including accessibility issues with data and models, ethical implications in deciding what sensory information to convey to the user, and privacy concerns both for the primary user and for others.
This content will become publicly available on August 1, 2023
FINS Auditing Framework: Group Fairness for Subset Selection
Subset selection is an integral component of AI systems that is increasingly affecting people’s livelihoods in applications ranging from hiring, healthcare, education, to financial decisions. Subset selections powered by AI-based methods include top- analytics, data summarization, clustering, and multi-winner voting. While group fairness auditing tools have been proposed for classification systems, these state-of-the-art tools are not directly applicable to measuring and conceptualizing fairness in selected subsets. In this work, we introduce the first comprehensive auditing framework, FINS, to support stakeholders in interpretably quantifying group fairness across a diverse range of subset-specific fairness concerns. FINS offers a family of novel measures that provide a flexible means to audit group fairness for fairness goals ranging from item-based, score-based, and a combination thereof. FINS provides one unified easy-to-understand interpretation across these different fairness problems. Further, we develop guidelines through the FINS Fair Subset Chart, that supports auditors in determining which measures are relevant to their problem context and fairness objectives. We provide a comprehensive mapping between each fairness measure and the belief system (i.e., worldview) that is encoded within its measurement of fairness. Lastly, we demonstrate the interpretability and efficacy of FINS in supporting the identification of real bias with case studies using more »
- Award ID(s):
- 2007932
- Publication Date:
- NSF-PAR ID:
- 10338008
- Journal Name:
- AAAI/ACM Conference on AI, Ethics, and Society (AEIS)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Content spread inequity is a potential unfairness issue in online social networks, disparately impacting minority groups. In this paper, we view friendship suggestion, a common feature in social network platforms, as an opportunity to achieve an equitable spread of content. In particular, we propose to suggest a subset of potential edges (currently not existing in the network but likely to be accepted) that maximizes content spread while achieving fairness. Instead of re-engineering the existing systems, our proposal builds a fairness wrapper on top of the existing friendship suggestion components. We prove the problem is NP-hard and inapproximable in polynomial time unless P=NP. Therefore, allowing relaxation of the fairness constraint, we propose an algorithm based on LP-relaxation and randomized rounding with fixed approximation ratios on fairness and content spread. We provide multiple optimizations, further improving the performance of our algorithm in practice. Besides, we propose a scalable algorithm that dynamically adds subsets of nodes, chosen via iterative sampling, and solves smaller problems corresponding to these nodes. Besides theoretical analysis, we conduct comprehensive experiments on real and synthetic data sets. Across different settings, our algorithms found solutions with near-zero unfairness while significantly increasing the content spread. Our scalable algorithm could process amore »
-
This survey article assesses and compares existing critiques of current fairness-enhancing technical interventions in machine learning (ML) that draw from a range of non-computing disciplines, including philosophy, feminist studies, critical race and ethnic studies, legal studies, anthropology, and science and technology studies. It bridges epistemic divides in order to offer an interdisciplinary understanding of the possibilities and limits of hegemonic computational approaches to ML fairness for producing just outcomes for society’s most marginalized. The article is organized according to nine major themes of critique wherein these different fields intersect: 1) how "fairness" in AI fairness research gets defined; 2) how problems for AI systems to address get formulated; 3) the impacts of abstraction on how AI tools function and its propensity to lead to technological solutionism; 4) how racial classification operates within AI fairness research; 5) the use of AI fairness measures to avoid regulation and engage in ethics washing; 6) an absence of participatory design and democratic deliberation in AI fairness considerations; 7) data collection practices that entrench “bias,” are non-consensual, and lack transparency; 8) the predatory inclusion of marginalized groups into AI systems; and 9) a lack of engagement with AI’s long-term social and ethical outcomes. Drawing frommore »
-
AI plays an increasingly prominent role in society since decisions that were once made by humans are now delegated to automated systems. These systems are currently in charge of deciding bank loans, criminals’ incarceration, and the hiring of new employees, and it’s not difficult to envision that they will in the future underpin most of the decisions in society. Despite the high complexity entailed by this task, there is still not much understanding of basic properties of such systems. For instance, we currently cannot detect (neither explain nor correct) whether an AI system is operating fairly (i.e., is abiding by the decision-constraints agreed by society) or it is reinforcing biases and perpetuating a preceding prejudicial practice. Issues of discrimination have been discussed extensively in legal circles, but there exists still not much understanding of the formal conditions that an automated system must adhere to be deemed fair. In this paper, we use the language of structural causality (Pearl, 2000) to fill in this gap. We start by introducing three new fine-grained measures of transmission of change from stimulus to effect called counterfactual direct (Ctf-DE), indirect (Ctf-IE), and spurious (Ctf-SE) effects. Building on these measures, we derive the causal explanation formula,more »
-
Deep neural networks (DNNs) are increasingly used in real-world applications (e.g. facial recognition). This has resulted in concerns about the fairness of decisions made by these models. Various notions and measures of fairness have been proposed to ensure that a decision-making system does not disproportionately harm (or benefit) particular subgroups of the population. In this paper, we argue that traditional notions of fairness that are only based on models' outputs are not sufficient when the model is vulnerable to adversarial attacks. We argue that in some cases, it may be easier for an attacker to target a particular subgroup, resulting in a form of robustness bias. We show that measuring robustness bias is a challenging task for DNNs and propose two methods to measure this form of bias. We then conduct an empirical study on state-of-the-art neural networks on commonly used real-world datasets such as CIFAR-10, CIFAR-100, Adience, and UTKFace and show that in almost all cases there are subgroups (in some cases based on sensitive attributes like race, gender, etc) which are less robust and are thus at a disadvantage. We argue that this kind of bias arises due to both the data distribution and the highly complex naturemore »