Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides.
more »
« less
The Cellular and Subcellular Organization of the Glucosinolate–Myrosinase System against Herbivores and Pathogens
Glucosinolates are an important class of secondary metabolites in Brassicales plants with a critical role in chemical defense. Glucosinolates are chemically inactive but can be hydrolyzed by myrosinases to produce a range of chemically active compounds toxic to herbivores and pathogens, thereby constituting the glucosinolate–myrosinase defense system or the mustard oil bomb. During the evolution, Brassicales plants have developed not only complex biosynthetic pathways for production of a large number of glucosinolate structures but also different classes of myrosinases that differ in catalytic mechanisms and substrate specificity. Studies over the past several decades have made important progress in the understanding of the cellular and subcellular organization of the glucosinolate–myrosinase system for rapid and timely detonation of the mustard oil bomb upon tissue damage after herbivore feeding and pathogen infection. Progress has also been made in understanding the mechanisms that herbivores and pathogens have evolved to counter the mustard oil bomb. In this review, we summarize our current understanding of the function and organization of the glucosinolate–myrosinase system in Brassicales plants and discuss both the progresses and future challenges in addressing this complex defense system as an excellent model for analyzing plant chemical defense.
more »
« less
- Award ID(s):
- 1758767
- PAR ID:
- 10338037
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 1577
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Baseline levels of glucosinolates—important defensive phytochemicals in brassicaceous plants—are determined by both genotype and environment. However, the ecological causes of glucosinolate plasticity are not well characterized. Fertilization is known to alter glucosinolate content of Brassica crops, but the effect of naturally occurring soil variation on glucosinolate content of wild plants is unknown. Here, we conducted greenhouse experiments using Boechera stricta to ask (i) whether soil variation among natural habitats shapes leaf and root glucosinolate profiles; (ii) whether such changes are caused by abiotic soil properties, soil microbes, or both; and (iii) whether soil-induced glucosinolate plasticity is genetically variable. Total glucosinolate quantity differed up to 2-fold between soils from different natural habitats, while the relative amounts of different compounds were less responsive. This effect was due to physico-chemical soil properties rather than microbial communities. We detected modest genetic variation for glucosinolate plasticity in response to soil. In addition, glucosinolate composition, but not quantity, of field-grown plants could be accurately predicted from measurements from greenhouse-grown plants. In summary, soil alone is sufficient to cause plasticity of baseline glucosinolate levels in natural plant populations, which may have implications for the evolution of this important trait across complex landscapes.more » « less
-
Salicylic acid (SA) is an important plant hormone with a critical role in plant defense against pathogen infection. Despite extensive research over the past 30 year or so, SA biosynthesis and its complex roles in plant defense are still not fully understood. Even though earlier biochemical studies suggested that plants synthesize SA from cinnamate produced by phenylalanine ammonia lyase (PAL), genetic analysis has indicated that in Arabidopsis, the bulk of SA is synthesized from isochorismate (IC) produced by IC synthase (ICS). Recent studies have further established the enzymes responsible for the conversion of IC to SA in Arabidopsis. However, it remains unclear whether other plants also rely on the ICS pathway for SA biosynthesis. SA induces defense genes against biotrophic pathogens, but represses genes involved in growth for balancing defense and growth to a great extent through crosstalk with the growth-promoting plant hormone auxin. Important progress has been made recently in understanding how SA attenuates plant growth by regulating the biosynthesis, transport, and signaling of auxin. In this review, we summarize recent progress in the biosynthesis and the broad roles of SA in regulating plant growth during defense responses. Further understanding of SA production and its regulation of both defense and growth will be critical for developing better knowledge to improve the disease resistance and fitness of crops.more » « less
-
Plant diseases resulting from pathogens and pests constitute a persistent threat to global food security. Pathogenic infections of plants are influenced by environmental factors; a concept encapsulated in the “disease triangle” model. It is important to elucidate the complex molecular mechanisms underlying the interactions among plants, their pathogens and various environmental factors in the disease triangle. This review aims to highlight recent advancements in the application of systems biology to enhance understanding of the plant disease triangle within the context of microbiome rising to become the 4th dimension. Recent progress in microbiome research utilizing model plant species has begun to illuminate the roles of specific microorganisms and the mechanisms of plant–microbial interactions. We will examine (1) microbiome-mediated functions related to plant growth and protection, (2) advancements in systems biology, (3) current -omics methodologies and new approaches, and (4) challenges and future perspectives regarding the exploitation of plant defense mechanisms via microbiomes. It is posited that systems biology approaches such as single-cell RNA sequencing and mass spectrometry-based multi-omics can decode plant defense mechanisms. Progress in this significant area of plant biology has the potential to inform rational crop engineering and breeding strategies aimed at enhancing disease resistance without compromising other pathways that affect crop yield.more » « less
-
Summary The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well‐defended plant lineage impacts interactions with diverse herbivores.Erysimum cheiranthoides(Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes inE. cheiranthoidesand characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. UsingE. cheiranthoidescardiac glycoside‐deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side‐chain cleavage, andEcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate‐tolerant specialist herbivores, but did not protect against all crucifer‐feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of theE. cheiranthoidescardiac glycoside biosynthetic pathway and demonstratein vivothat cardiac glycoside production allowsErysimumto escape from some, but not all, specialist herbivores.more » « less
An official website of the United States government

