skip to main content


Title: Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.  more » « less
Award ID(s):
1707398
NSF-PAR ID:
10338038
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Theunissen, Frédéric E.
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
17
Issue:
9
ISSN:
1553-7358
Page Range / eLocation ID:
e1009439
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a method for learning the posture and struc- ture of agents from unlabelled behavioral videos. Start- ing from the observation that behaving agents are gener- ally the main sources of movement in behavioral videos, our method, Behavioral Keypoint Discovery (B-KinD), uses an encoder-decoder architecture with a geometric bottle- neck to reconstruct the spatiotemporal difference between video frames. By focusing only on regions of movement, our approach works directly on input videos without requir- ing manual annotations. Experiments on a variety of agent types (mouse, fly, human, jellyfish, and trees) demonstrate the generality of our approach and reveal that our dis- covered keypoints represent semantically meaningful body parts, which achieve state-of-the-art performance on key- point regression among self-supervised methods. Addition- ally, B-KinD achieve comparable performance to supervised keypoints on downstream tasks, such as behavior clas- sification, suggesting that our method can dramatically re- duce model training costs vis-a-vis supervised methods. 
    more » « less
  2. Vedaldi, A. ; Bischof, H. ; Brox, T. ; Frahm, JM. (Ed.)
    The problem of action localization involves locating the action in the video, both over time and spatially in the image. The current dominant approaches use supervised learning to solve this problem. They require large amounts of annotated training data, in the form of frame-level bounding box annotations around the region of interest. In this paper, we present a new approach based on continual learning that uses feature-level predictions for self-supervision. It does not require any training annotations in terms of frame-level bounding boxes. The approach is inspired by cognitive models of visual event perception that propose a prediction-based approach to event understanding. We use a stack of LSTMs coupled with a CNN encoder, along with novel attention mechanisms, to model the events in the video and use this model to predict high-level features for the future frames. The prediction errors are used to learn the parameters of the models continuously. This self-supervised framework is not complicated as other approaches but is very effective in learning robust visual representations for both labeling and localization. It should be noted that the approach outputs in a streaming fashion, requiring only a single pass through the video, making it amenable for real-time processing. We demonstrate this on three datasets - UCF Sports, JHMDB, and THUMOS’13 and show that the proposed approach outperforms weakly-supervised and unsupervised baselines and obtains competitive performance compared to fully supervised baselines. Finally, we show that the proposed framework can generalize to egocentric videos and achieve state-of-the-art results on the unsupervised gaze prediction task. 
    more » « less
  3. Understanding human behavior and activity facilitates advancement of numerous real-world applications, and is critical for video analysis. Despite the progress of action recognition algorithms in trimmed videos, the majority of real-world videos are lengthy and untrimmed with sparse segments of interest. The task of temporal activity detection in untrimmed videos aims to localize the temporal boundary of actions and classify the action categories. Temporal activity detection task has been investigated in full and limited supervision settings depending on the availability of action annotations. This paper provides an extensive overview of deep learning-based algorithms to tackle temporal action detection in untrimmed videos with different supervision levels including fully-supervised, weakly-supervised, unsupervised, self-supervised, and semi-supervised. In addition, this paper reviews advances in spatio-temporal action detection where actions are localized in both temporal and spatial dimensions. Action detection in online setting is also reviewed where the goal is to detect actions in each frame without considering any future context in a live video stream. Moreover, the commonly used action detection benchmark datasets and evaluation metrics are described, and the performance of the state-of-the-art methods are compared. Finally, real-world applications of temporal action detection in untrimmed videos and a set of future directions are discussed. 
    more » « less
  4. Event perception tasks such as recognizing and localizing actions in streaming videos are essential for scaling to real-world application contexts. We tackle the problem of learning actor-centered representations through the notion of continual hierarchical predictive learning to localize actions in streaming videos without the need for training labels and outlines for the objects in the video. We propose a framework driven by the notion of hierarchical predictive learning to construct actor-centered features by attention-based contextualization. The key idea is that predictable features or objects do not attract attention and hence do not contribute to the action of interest. Experiments on three benchmark datasets show that the approach can learn robust representations for localizing actions using only one epoch of training, i.e., a single pass through the streaming video. We show that the proposed approach outperforms unsupervised and weakly supervised baselines while offering competitive performance to fully supervised approaches. Additionally, we extend the model to multi-actor settings to recognize group activities while localizing the multiple, plausible actors. We also show that it generalizes to out-of-domain data with limited performance degradation. 
    more » « less
  5. Avidan, S. ; Brostow, G. ; Cissé, M ; Farinella, G.M. ; Hassner, T. (Ed.)
    Event perception tasks such as recognizing and localizing actions in streaming videos are essential for scaling to real-world application contexts. We tackle the problem of learning actor-centered representations through the notion of continual hierarchical predictive learning to localize actions in streaming videos without the need for training labels and outlines for the objects in the video. We propose a framework driven by the notion of hierarchical predictive learning to construct actor-centered features by attention-based contextualization. The key idea is that predictable features or objects do not attract attention and hence do not contribute to the action of interest. Experiments on three benchmark datasets show that the approach can learn robust representations for localizing actions using only one epoch of training, i.e., a single pass through the streaming video. We show that the proposed approach outperforms unsupervised and weakly supervised baselines while offering competitive performance to fully supervised approaches. Additionally, we extend the model to multi-actor settings to recognize group activities while localizing the multiple, plausible actors. We also show that it generalizes to out-of-domain data with limited performance degradation. 
    more » « less