skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Place cells may simply be memory cells: Memory compression leads to spatial tuning and history dependence
The observation of place cells has suggested that the hippocampus plays a special role in encoding spatial information. However, place cell responses are modulated by several nonspatial variables and reported to be rather unstable. Here, we propose a memory model of the hippocampus that provides an interpretation of place cells consistent with these observations. We hypothesize that the hippocampus is a memory device that takes advantage of the correlations between sensory experiences to generate compressed representations of the episodes that are stored in memory. A simple neural network model that can efficiently compress information naturally produces place cells that are similar to those observed in experiments. It predicts that the activity of these cells is variable and that the fluctuations of the place fields encode information about the recent history of sensory experiences. Place cells may simply be a consequence of a memory compression process implemented in the hippocampus.  more » « less
Award ID(s):
1707398
PAR ID:
10338047
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
51
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta–gamma phase–amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3–5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes. 
    more » « less
  2. null (Ed.)
    Neurophysiological recordings in behaving rodents demonstrate neuronal response properties that may code space and time for episodic memory and goal-directed behaviour. Here, we review recordings from hippocampus, entorhinal cortex, and retrosplenial cortex to address the problem of how neurons encode multiple overlapping spatiotemporal trajectories and disambiguate these for accurate memory-guided behaviour. The solution could involve neurons in the entorhinal cortex and hippocampus that show mixed selectivity, coding both time and location. Some grid cells and place cells that code space also respond selectively as time cells, allowing differentiation of time intervals when a rat runs in the same location during a delay period. Cells in these regions also develop new representations that differentially code the context of prior or future behaviour allowing disambiguation of overlapping trajectories. Spiking activity is also modulated by running speed and head direction, supporting the coding of episodic memory not as a series of snapshots but as a trajectory that can also be distinguished on the basis of speed and direction. Recent data also address the mechanisms by which sensory input could distinguish different spatial locations. Changes in firing rate reflect running speed on long but not short time intervals, and few cells code movement direction, arguing against path integration for coding location. Instead, new evidence for neural coding of environmental boundaries in egocentric coordinates fits with a modelling framework in which egocentric coding of barriers combined with head direction generates distinct allocentric coding of location. The egocentric input can be used both for coding the location of spatiotemporal trajectories and for retrieving specific viewpoints of the environment. Overall, these different patterns of neural activity can be used for encoding and disambiguation of prior episodic spatiotemporal trajectories or for planning of future goal-directed spatiotemporal trajectories. 
    more » « less
  3. AbstractDuring spatial exploration, neural circuits in the hippocampus store memories of sequences of sensory events encountered in the environment. When sensory information is absent during ‘offline’ resting periods, brief neuronal population bursts can ‘replay’ sequences of activity that resemble bouts of sensory experience. These sequences can occur in either forward or reverse order, and can even include spatial trajectories that have not been experienced, but are consistent with the topology of the environment. The neural circuit mechanisms underlying this variable and flexible sequence generation are unknown. Here we demonstrate in a recurrent spiking network model of hippocampal area CA3 that experimental constraints on network dynamics such as population sparsity, stimulus selectivity, rhythmicity and spike rate adaptation, as well as associative synaptic connectivity, enable additional emergent properties, including variable offline memory replay. In an online stimulus‐driven state, we observed the emergence of neuronal sequences that swept from representations of past to future stimuli on the timescale of the theta rhythm. In an offline state driven only by noise, the network generated both forward and reverse neuronal sequences, and recapitulated the experimental observation that offline memory replay events tend to include salient locations like the site of a reward. These results demonstrate that biological constraints on the dynamics of recurrent neural circuits are sufficient to enable memories of sensory events stored in the strengths of synaptic connections to be flexibly read out during rest and sleep, which is thought to be important for memory consolidation and planning of future behaviour.image Key pointsA recurrent spiking network model of hippocampal area CA3 was optimized to recapitulate experimentally observed network dynamics during simulated spatial exploration.During simulated offline rest, the network exhibited the emergent property of generating flexible forward, reverse and mixed direction memory replay events.Network perturbations and analysis of model diversity and degeneracy identified associative synaptic connectivity and key features of network dynamics as important for offline sequence generation.Network simulations demonstrate that population over‐representation of salient positions like the site of reward results in biased memory replay. 
    more » « less
  4. Abstract A neuromorphic simultaneous localization and mapping (SLAM) system shows potential for more efficient implementation than its traditional counterpart. At the mean time a neuromorphic model of spatial encoding neurons in silicon could provide insights on the functionality and dynamic between each group of cells. Especially when realistic factors including variations and imperfections on the neural movement encoding are presented to challenge the existing hypothetical models for localization. We demonstrate a mixed-mode implementation for spatial encoding neurons including theta cells, egocentric place cells, and the typical allocentric place cells. Together, they form a biologically plausible network that could reproduce the localization functionality of place cells observed in rodents. The system consists of a theta chip with 128 theta cell units and an FPGA implementing 4 networks for egocentric place cells formation that provides the capability for tracking on a 11 by 11 place cell grid. Experimental results validate the robustness of our model when suffering from as much as 18% deviation, induced by parameter variations in analog circuits, from the mathematical model of theta cells. We provide a model for implementing dynamic neuromorphic SLAM systems for dynamic-scale mapping of cluttered environments, even when subject to significant errors in sensory measurements and real-time analog computation. We also suggest a robust approach for the network topology of spatial cells that can mitigate neural non-uniformity and provides a hypothesis for the function of grid cells and the existence of egocentric place cells. 
    more » « less
  5. null (Ed.)
    Memory is typically thought of as enabling reminiscence about past experiences. However, memory also informs and guides processing of future experiences. These two functions of memory are often at odds: Remembering specific experiences from the past requires storing idiosyncratic properties that define particular moments in space and time, but by definition such properties will not be shared with similar situations in the future and thus may not be applicable to future situations. We discovered that, when faced with this conflict, the brain prioritizes prediction over encoding. Behavioral tests of recognition and source recall showed that items allowing for prediction of what will appear next based on learned regularities were less likely to be encoded into memory. Brain imaging revealed that the hippocampus was responsible for this interference between statistical learning and episodic memory. The more that the hippocampus predicted the category of an upcoming item, the worse the current item was encoded. This competition may serve an adaptive purpose, focusing encoding on experiences for which we do not yet have a predictive model. 
    more » « less