Abstract We give a detailed proof of the homological Arnold conjecture for nondegenerate periodic Hamiltonians on general closed symplectic manifolds M via a direct Piunikhin–Salamon–Schwarz morphism. Our constructions are based on a coherent polyfold description for moduli spaces of pseudoholomorphic curves in a family of symplectic manifolds degenerating from $${{\mathbb {C}}{\mathbb {P}}}^1\times M$$ C P 1 × M to $${{\mathbb {C}}}^+ \times M$$ C + × M and $${{\mathbb {C}}}^-\times M$$ C - × M , as developed by Fish–Hofer–Wysocki–Zehnder as part of the Symplectic Field Theory package. To make the paper self-contained we include all polyfold assumptions, describe the coherent perturbation iteration in detail, and prove an abstract regularization theorem for moduli spaces with evaluation maps relative to a countable collection of submanifolds. The 2011 sketch of this proof was joint work with Peter Albers, Joel Fish.
more »
« less
K-MODULI OF CURVES ON A QUADRIC SURFACE AND K3 SURFACES
Abstract We show that the K-moduli spaces of log Fano pairs $$\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$$ , where C is a $(4,4)$ curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ , complete intersection curves in $$\mathbb {P}^3$$ . This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$ curves on $$\mathbb {P}^1\times \mathbb {P}^1$$ and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.
more »
« less
- PAR ID:
- 10338164
- Date Published:
- Journal Name:
- Journal of the Institute of Mathematics of Jussieu
- ISSN:
- 1474-7480
- Page Range / eLocation ID:
- 1 to 41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We show that the K-moduli spaces of log Fano pairs $$({\mathbb {P}}^3, cS)$$ ( P 3 , c S ) where S is a quartic surface interpolate between the GIT moduli space of quartic surfaces and the Baily–Borel compactification of moduli of quartic K3 surfaces as c varies in the interval (0, 1). We completely describe the wall crossings of these K-moduli spaces. As the main application, we verify Laza–O’Grady’s prediction on the Hassett–Keel–Looijenga program for quartic K3 surfaces. We also obtain the K-moduli compactification of quartic double solids, and classify all Gorenstein canonical Fano degenerations of $${\mathbb {P}}^3$$ P 3 .more » « less
-
Abstract We construct proper good moduli spaces parametrizing K‐polystable ‐Gorenstein smoothable log Fano pairs , where is a Fano variety and is a rational multiple of the anticanonical divisor. We then establish a wall‐crossing framework of these K‐moduli spaces as varies. The main application in this paper is the case of plane curves of degree as boundary divisors of . In this case, we show that when the coefficient is small, the K‐moduli space of these pairs is isomorphic to the GIT moduli space. We then show that the first wall crossing of these K‐moduli spaces are weighted blow‐ups of Kirwan type. We also describe all wall crossings for degree 4,5,6 and relate the final K‐moduli spaces to Hacking's compactification and the moduli of K3 surfaces.more » « less
-
Abstract The Brill–Noether theory of curves plays a fundamental role in the theory of curves and their moduli and has been intensively studied since the 19th century. In contrast, Brill–Noether theory for higher dimensional varieties is less understood. It is hard to determine when Brill–Noether loci are nonempty and these loci can be reducible and of larger than the expected dimension. Let $$E$$ be a semistable sheaf on $${\mathbb{P}}^{2}$$. In this paper, we give an upper bound $$\beta _{r, \mu }$$ for $$h^{0}(E)$$ in terms of the rank $$r$$ and the slope $$\mu $$ of $$E$$. We show that the bound is achieved precisely when $$E$$ is a twist of a Steiner bundle. We classify the sheaves $$E$$ such that $$h^{0}(E)$$ is within $$\lfloor \mu (E) \rfloor + 1$$ of $$\beta _{r, \mu }$$. We determine the nonemptiness, irreducibility and dimension of the Brill–Noether loci in the moduli spaces of sheaves on $${\mathbb{P}}^{2}$$ with $$h^{0}(E)$$ in this range. When they are proper subvarieties, these Brill–Noether loci are irreducible though almost always of larger than the expected dimension.more » « less
-
Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number.more » « less
An official website of the United States government

