Abstract Inspired by Lehmer’s conjecture on the non-vanishing of the Ramanujan $$\tau $$ τ -function, one may ask whether an odd integer $$\alpha $$ α can be equal to $$\tau (n)$$ τ ( n ) or any coefficient of a newform f ( z ). Balakrishnan, Craig, Ono and Tsai used the theory of Lucas sequences and Diophantine analysis to characterize non-admissible values of newforms of even weight $$k\ge 4$$ k ≥ 4 . We use these methods for weight 2 and 3 newforms and apply our results to L -functions of modular elliptic curves and certain K 3 surfaces with Picard number $$\ge 19$$ ≥ 19 . In particular, for the complete list of weight 3 newforms $$f_\lambda (z)=\sum a_\lambda (n)q^n$$ f λ ( z ) = ∑ a λ ( n ) q n that are $$\eta $$ η -products, and for $$N_\lambda $$ N λ the conductor of some elliptic curve $$E_\lambda $$ E λ , we show that if $$|a_\lambda (n)|<100$$ | a λ ( n ) | < 100 is odd with $$n>1$$ n > 1 and $$(n,2N_\lambda )=1$$ ( n , 2 N λ ) = 1 , then $$\begin{aligned} a_\lambda (n) \in&\{-5,9,\pm 11,25, \pm 41, \pm 43, -45,\pm 47,49, \pm 53,55, \pm 59, \pm 61,\\&\pm 67, -69,\pm 71,\pm 73,75, \pm 79,\pm 81, \pm 83, \pm 89,\pm 93 \pm 97, 99\}. \end{aligned}$$ a λ ( n ) ∈ { - 5 , 9 , ± 11 , 25 , ± 41 , ± 43 , - 45 , ± 47 , 49 , ± 53 , 55 , ± 59 , ± 61 , ± 67 , - 69 , ± 71 , ± 73 , 75 , ± 79 , ± 81 , ± 83 , ± 89 , ± 93 ± 97 , 99 } . Assuming the Generalized Riemann Hypothesis, we can rule out a few more possibilities leaving $$\begin{aligned} a_\lambda (n) \in \{-5,9,\pm 11,25,-45,49,55,-69,75,\pm 81,\pm 93, 99\}. \end{aligned}$$ a λ ( n ) ∈ { - 5 , 9 , ± 11 , 25 , - 45 , 49 , 55 , - 69 , 75 , ± 81 , ± 93 , 99 } . 
                        more » 
                        « less   
                    
                            
                            Variation of canonical height for\break Fatou points on ℙ 1
                        
                    
    
            Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K  ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1  ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X  ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t  ( a t ) - h D  ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X  ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v  ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X  ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1  ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1  ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ  ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2050037
- PAR ID:
- 10454883
- Date Published:
- Journal Name:
- Journal für die reine und angewandte Mathematik (Crelles Journal)
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 0075-4102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} .more » « less
- 
            Abstract The 4  N {4N} -carpets are a class of infinitely ramified self-similar fractals with a large group of symmetries. For a 4  N {4N} -carpet F , let { F n } n ≥ 0 {\{F_{n}\}_{n\geq 0}} be the natural decreasing sequence of compact pre-fractal approximations with ⋂ n F n = F {\bigcap_{n}F_{n}=F} . On each F n {F_{n}} , let ℰ  ( u , v ) = ∫ F N ∇  u ⋅ ∇  v  d  x {\mathcal{E}(u,v)=\int_{F_{N}}\nabla u\cdot\nabla v\,dx} be the classical Dirichlet form and u n {u_{n}} be the unique harmonic function on F n {F_{n}} satisfying a mixed boundary value problem corresponding to assigning a constant potential between two specific subsets of the boundary. Using a method introduced by [M. T. Barlow and R. F. Bass,On the resistance of the Sierpiński carpet, Proc. Roy. Soc. Lond. Ser. A 431 (1990), no. 1882, 345–360], we prove a resistance estimate of the following form: there is ρ = ρ  ( N ) > 1 {\rho=\rho(N)>1} such that ℰ  ( u n , u n )  ρ n {\mathcal{E}(u_{n},u_{n})\rho^{n}} is bounded above and below by constants independent of n . Such estimates have implications for the existence and scaling properties of Brownian motion on F .more » « less
- 
            Let $$\phi(x,y)$$ be a continuous function, smooth away from the diagonal, such that, for some $$\alpha>0$$, the associated generalized Radon transforms \begin{equation} \label{Radon} R_t^{\phi}f(x)=\int_{\phi(x,y)=t} f(y) \psi(y) d\sigma_{x,t}(y) \end{equation} map $$L^2({\mathbb R}^d) \to H^{\alpha}({\mathbb R}^d)$$ for all $t>0$. Let $$E$$ be a compact subset of $${\mathbb R}^d$$ for some $$d \ge 2$$, and suppose that the Hausdorff dimension of $$E$$ is $$>d-\alpha$$. We show that any tree graph $$T$$ on $k+1$ ($$k \ge 1$$) vertices is realizable in $$E$$, in the sense that there exist distinct $$x^1, x^2, \dots, x^{k+1} \in E$$ and $t>0$ such that the $$\phi$$-distance $$\phi(x^i, x^j)$$ is equal to $$t$$ for all pairs $(i,j)$ corresponding to the edges of the graph $$T$$.more » « less
- 
            In this paper, we present a sharper version of the results in the paper Dimension independent bounds for general shallow networks; Neural Networks, \textbf{123} (2020), 142-152. Let $$\mathbb{X}$$ and $$\mathbb{Y}$$ be compact metric spaces. We consider approximation of functions of the form $$ x\mapsto\int_{\mathbb{Y}} G( x, y)d\tau( y)$$, $$ x\in\mathbb{X}$$, by $$G$$-networks of the form $$ x\mapsto \sum_{k=1}^n a_kG( x, y_k)$$, $$ y_1,\cdots, y_n\in\mathbb{Y}$$, $$a_1,\cdots, a_n\in\mathbb{R}$$. Defining the dimensions of $$\mathbb{X}$$ and $$\mathbb{Y}$$ in terms of covering numbers, we obtain dimension independent bounds on the degree of approximation in terms of $$n$$, where also the constants involved are all dependent at most polynomially on the dimensions. Applications include approximation by power rectified linear unit networks, zonal function networks, certain radial basis function networks as well as the important problem of function extension to higher dimensional spaces.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    