null
(Ed.)
Fuzz testing has been used to find bugs in programs since the 1990s, but despite decades of dedicated research, there is still no consensus on which fuzzing techniques work best. One reason for this is the paucity of ground truth: bugs in real programs with known root causes and triggering inputs are difficult to collect at a meaningful scale. Bug injection technologies that add synthetic bugs into real programs seem to offer a solution, but the differences in finding these synthetic bugs versus organic bugs have not previously been explored at a large scale. Using over 80 years of CPU time, we ran eight fuzzers across 20 targets from the Rode0day bug-finding competition and the LAVA-M corpus. Experiments were standardized with respect to compute resources and metrics gathered. These experiments show differences in fuzzer performance as well as the impact of various configuration options. For instance, it is clear that integrating symbolic execution with mutational fuzzing is very effective and that using dictionaries improves performance. Other conclusions are less clear-cut; for example, no one fuzzer beat all others on all tests. It is noteworthy that no fuzzer found any organic bugs (i.e., one reported in a CVE), despite 50 such bugs being available for discovery in the fuzzing corpus. A close analysis of results revealed a possible explanation: a dramatic difference between where synthetic and organic bugs live with respect to the "main path" discovered by fuzzers. We find that recent updates to bug injection systems have made synthetic bugs more difficult to discover, but they are still significantly easier to find than organic bugs in our target programs. Finally, this study identifies flaws in bug injection techniques and suggests a number of axes along which synthetic bugs should be improved.
more »
« less