skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blind demixing methods for recovering dense neuronal morphology from barcode imaging data
Cellular barcoding methods offer the exciting possibility of ‘infinite-pseudocolor’ anatomical reconstruction—i.e., assigning each neuron its own random unique barcoded ‘pseudocolor,’ and then using these pseudocolors to trace the microanatomy of each neuron. Here we use simulations, based on densely-reconstructed electron microscopy microanatomy, with signal structure matched to real barcoding data, to quantify the feasibility of this procedure. We develop a new blind demixing approach to recover the barcodes that label each neuron, and validate this method on real data with known barcodes. We also develop a neural network which uses the recovered barcodes to reconstruct the neuronal morphology from the observed fluorescence imaging data, ‘connecting the dots’ between discontiguous barcode amplicon signals. We find that accurate recovery should be feasible, provided that the barcode signal density is sufficiently high. This study suggests the possibility of mapping the morphology and projection pattern of many individual neurons simultaneously, at high resolution and at large scale, via conventional light microscopy.  more » « less
Award ID(s):
1707398
PAR ID:
10338244
Author(s) / Creator(s):
; ; ;
Editor(s):
Cuntz, Hermann
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
4
ISSN:
1553-7358
Page Range / eLocation ID:
e1009991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Random DNA barcodes are a versatile tool for tracking cell lineages, with applications ranging from development to cancer to evolution. Here, we review and critically evaluate barcode designs as well as methods of barcode sequencing and initial processing of barcode data. We first demonstrate how various barcode design decisions affect data quality and propose a new design that balances all considerations that we are currently aware of. We then discuss various options for the preparation of barcode sequencing libraries, including inline indices and Unique Molecular Identifiers (UMIs). Finally, we test the performance of several established and new bioinformatic pipelines for the extraction of barcodes from raw sequencing reads and for error correction. We find that both alignment and regular expression-based approaches work well for barcode extraction, and that error-correction pipelines designed specifically for barcode data are superior to generic ones. Overall, this review will help researchers to approach their barcoding experiments in a deliberate and systematic way. 
    more » « less
  2. Abstract We are far from knowing all species living on the planet. Understanding biodiversity is demanding and requires time and expertise. Most groups are understudied given problems of identifying and delimiting species. DNA barcoding emerged to overcome some of the difficulties in identifying species. Its limitations derive from incomplete taxonomic knowledge and the lack of comprehensive DNA barcode libraries for so many taxonomic groups. Here, we evaluate how useful barcoding is for identifying arthropods from highly diverse leaf litter communities in the southern Appalachian Mountains (USA). We used 3 reference databases and several automated classification methods on a data set including several arthropod groups. Acari, Araneae, Collembola, Coleoptera, Diptera, and Hymenoptera were well represented, showing different performances across methods and databases. Spiders performed the best, with correct identification rates to species and genus levels of ~50% across databases. Springtails performed poorly, no barcodes were identified to species or genus. Other groups showed poor to mediocre performance, from around 3% (mites) to 20% (beetles) correctly identified barcodes to species, but also with some false identifications. In general, BOLD-based identification offered the best identification results but, in all cases except spiders, performance is poor, with less than a fifth of specimens correctly identified to genus or species. Our results indicate that the soil arthropod fauna is still insufficiently documented, with many species unrepresented in DNA barcode libraries. More effort toward integrative taxonomic characterization is needed to complete our reference libraries before we can rely on DNA barcoding as a universally applicable identification method. 
    more » « less
  3. Harris, Kelley (Ed.)
    Measuring the fitnesses of genetic variants is a fundamental objective in evolutionary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling a library of genetic variants with unique sequence barcodes, competing the labeled strains in batch culture, and using deep sequencing to track changes in the barcode abundances over time. However, idiosyncratic properties of barcodes can induce nonuniform amplification or uneven sequencing coverage that causes some barcodes to be over- or under-represented in samples. This systematic bias can result in erroneous read count trajectories and misestimates of fitness. Here, we develop a computational method, named REBAR (Removing the Effects of Bias through Analysis of Residuals), for inferring the effects of barcode processing bias by leveraging the structure of systematic deviations in the data. We illustrate this approach by applying it to two independent data sets, and demonstrate that this method estimates and corrects for bias more accurately than standard proxies, such as GC-based corrections. REBAR mitigates bias and improves fitness estimates in high-throughput assays without introducing additional complexity to the experimental protocols, with potential applications in a range of experimental evolution and mutation screening contexts. 
    more » « less
  4. Bahoo, Yeganeh; Georgiou, Konstantinos (Ed.)
    We investigate the maximum subbarcode matching problem which arises from the study of persistent homology and introduce the subbarcode distance on barcodes. A barcode is a set of intervals which correspond to topological features in data and is the output of a persistent homology computation. A barcode A has a subbarcode matching to B if each interval in A matches to an interval in B which contains it. We present an algorithm which takes two barcodes, A and B, and returns a maximum subbarcode matching. 
    more » « less
  5. Biodiversity genomics research requires reliable organismal identification, which can be difficult based on morphology alone. DNA-based identification using DNA barcoding can provide confirmation of species identity and resolve taxonomic issues but is rarely used in studies generating reference genomes. Here, we describe the development and implementation of DNA barcoding for the Darwin Tree of Life Project (DToL), which aims to sequence and assemble high quality reference genomes for all eukaryotic species in Britain and Ireland. We present a standardised framework for DNA barcode sequencing and data interpretation that is then adapted for diverse organismal groups. DNA barcoding data from over 12,000 DToL specimens has identified up to 20% of samples requiring additional verification, with 2% of seed plants and 3.5% of animal specimens subsequently having their names changed. We also make recommendations for future developments using new sequencing approaches and streamlined bioinformatic approaches. 
    more » « less