We strengthen the usual stability theorem for Vietoris-Rips (VR) persistent homology of finite metric spaces by building upon constructions due to Usher and Zhang in the context of filtered chain complexes. The information present at the level of filtered chain complexes includes points with zero persistence which provide additional information to that present at homology level. The resulting invariant, called verbose barcode, which has a stronger discriminating power than the usual barcode, is proved to be stable under certain metrics that are sensitive to these ephemeral points. In some situations, we provide ways to compute such metrics between verbose barcodes. We also exhibit several examples of finite metric spaces with identical (standard) VR barcodes yet with different verbose VR barcodes, thus confirming that these ephemeral points strengthen the standard VR barcode.
more »
« less
Maximum Subbarcode Matching and Subbarcode Distance
We investigate the maximum subbarcode matching problem which arises from the study of persistent homology and introduce the subbarcode distance on barcodes. A barcode is a set of intervals which correspond to topological features in data and is the output of a persistent homology computation. A barcode A has a subbarcode matching to B if each interval in A matches to an interval in B which contains it. We present an algorithm which takes two barcodes, A and B, and returns a maximum subbarcode matching.
more »
« less
- Award ID(s):
- 2017980
- PAR ID:
- 10422657
- Editor(s):
- Bahoo, Yeganeh; Georgiou, Konstantinos
- Date Published:
- Journal Name:
- Canadian Conference in Computational Geometry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce harmonic persistent homology spaces for filtrations of finite simplicial complexes. As a result we can associate concrete subspaces of cycles to each bar of the barcode of the filtration. We prove stability of the harmonic persistent homology subspaces, as well as the subspaces associated to the bars of the barcodes, under small perturbations of functions defining them. We relate the notion of ``essential simplices'' introduced in an earlier work to identify simplices which play a significant role in the birth of a bar, with that of harmonic persistent homology. We prove that the harmonic representatives of simple bars maximizes the ``relative essential content'' amongst all representatives of the bar, where the relative essential content is the weight a particular cycle puts on the set of essential simplices. \footnote{An extended abstract of the paper appeared in the Proceedings of the IEEE Symposium on the Foundations of Computer Science, 2021.}more » « less
-
Abstract A central challenge in topological data analysis is the interpretation of barcodes. The classical algebraic-topological approach to interpreting homology classes is to build maps to spaces whose homology carries semantics we understand and then to appeal to functoriality. However, we often lack such maps in real data; instead, we must rely on a cross-dissimilarity measure between our observations of a system and a reference. In this paper, we develop a pair of computational homological algebra approaches for relating persistent homology classes and barcodes:persistent extension, which enumerates potential relations between homology classes from two complexes built on the same vertex set, and the method ofanalogous bars, which utilizes persistent extension and the witness complex built from a cross-dissimilarity measure to provide relations across systems. We provide an implementation of these methods and demonstrate their use in comparing homology classes between two samples from the same metric space and determining whether topology is maintained or destroyed under clustering and dimensionality reduction.more » « less
-
Abstract We develop a topological analysis of robust traffic pace patterns using persistent homology. We develop Rips filtrations, parametrized by pace, for a symmetrization of traffic pace along the (naturally) directed edges in a road network. Our symmetrization is inspired by recent work of Turner (2019Algebr. Geom. Topol.191135–1170). Our goal is to construct barcodes which help identify meaningful pace structures, namely connected components or ‘rings’. We develop a case study of our methods using datasets of Manhattan and Chengdu traffic speeds. In order to cope with the computational complexity of these large datasets, we develop an auxiliary application of the directed Louvain neighborhood-finding algorithm. We implement this as a preprocessing step prior to our main persistent homology analysis in order to coarse-grain small topological structures. We finally compute persistence barcodes on these neighborhoods. The persistence barcodes have a metric structure which allows us to both qualitatively and quantitatively compare traffic networks. As an example of the results, we find robust connected pace structures near Midtown bridges connecting Manhattan to the mainland.more » « less
-
We study topological entropy of compactly supported Hamiltonian diffeomorphisms from a perspective of persistent homology and Floer theory. We introduce barcode entropy, a Floer-theoretic invariant of a Hamiltonian diffeomorphism, measuring exponential growth under iterations of the number of not-too-short bars in the barcode of the Floer complex. We prove that the barcode entropy is bounded from above by the topological entropy and, conversely, that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set, e.g., a hyperbolic horseshoe. As a consequence, we conclude that for Hamiltonian diffeomorphisms of surfaces the barcode entropy is equal to the topological entropy.more » « less
An official website of the United States government

