Introduction Multi-series CT (MSCT) scans, including non-contrast CT (NCCT), CT Perfusion (CTP), and CT Angiography (CTA), are widely used in acute stroke imaging. While each scan has its advantage in disease diagnosis, the varying image resolution of different series hinders the ability of the radiologist to discern subtle suspicious findings. Besides, higher image quality requires high radiation doses, leading to increases in health risks such as cataract formation and cancer induction. Thus, it is highly crucial to develop an approach to improve MSCT resolution and to lower radiation exposure. Hypothesis MSCT imaging of the same patient is highly correlated in structural features, the transferring and integration of the shared and complementary information from different series are beneficial for achieving high image quality. Methods We propose TL-GAN, a learning-based method by using Transfer Learning (TL) and Generative Adversarial Network (GAN) to reconstruct high-quality diagnostic images. Our TL-GAN method is evaluated on 4,382 images collected from nine patients’ MSCT scans, including 415 NCCT slices, 3,696 CTP slices, and 271 CTA slices. We randomly split the nine patients into a training set (4 patients), a validation set (2 patients), and a testing set (3 patients). In preprocessing, we remove the background and skullmore »
Learning with Free Object Segments for Long-Tailed Instance Segmentation
In this paper, we explore the possibility to increase the training examples without laborious data collection and annotation for long-tailed instance segmentation. We find that an abundance of instance segments can potentially be obtained freely from object-centric images, according to two insights: (i) an object-centric image usually contains one salient object in a simple background; (ii) objects from the same class often share similar appearances or similar contrasts to the background. Motivated by these insights, we propose a simple and scalable framework FREESEG for extracting and leveraging these “free” object segments to facilitate model training. Concretely, we investigate the similarity among object-centric images of the same class to propose candidate segments of foreground instances, followed by a novel ranking of segment quality. The resulting high quality object segments can then be used to augment the existing long-tailed datasets, e.g., by copying and pasting the segments onto the original training images. Extensive experiments show that FREESEG yields substantial improvements on top of strong baselines and achieves state-of-the-art accuracy for segmenting rare object categories.
- Award ID(s):
- 2118240
- Publication Date:
- NSF-PAR ID:
- 10338449
- Journal Name:
- L3D-IVU: Workshop on Learning with Limited Labeled Data for Image and Video Understanding, in conjunction with the IEEE / CVF Computer Vision and Pattern Recognition Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, Iyad Selesnick (Ed.)The Temple University Hospital EEG Corpus (TUEG) [1] is the largest publicly available EEG corpus of its type and currently has over 5,000 subscribers (we currently average 35 new subscribers a week). Several valuable subsets of this corpus have been developed including the Temple University Hospital EEG Seizure Corpus (TUSZ) [2] and the Temple University Hospital EEG Artifact Corpus (TUAR) [3]. TUSZ contains manually annotated seizure events and has been widely used to develop seizure detection and prediction technology [4]. TUAR contains manually annotated artifacts and has been used to improve machine learning performance on seizure detection tasks [5]. In this poster, we will discuss recent improvements made to both corpora that are creating opportunities to improve machine learning performance. Two major concerns that were raised when v1.5.2 of TUSZ was released for the Neureka 2020 Epilepsy Challenge were: (1) the subjects contained in the training, development (validation) and blind evaluation sets were not mutually exclusive, and (2) high frequency seizures were not accurately annotated in all files. Regarding (1), there were 50 subjects in dev, 50 subjects in eval, and 592 subjects in train. There was one subject common to dev and eval, five subjects common to dev andmore »
-
We propose a new approach for high resolution semantic image synthesis. It consists of one base image generator and multiple class-specific generators. The base generator generates high quality images based on a segmentation map. To further improve the quality of different objects, we create a bank of Generative Adversarial Networks (GANs) by separately training class-specific models. This has several benefits including – dedicated weights for each class; centrally aligned data for each model; additional training data from other sources, potential of higher resolution and quality; and easy manipulation of a specific object in the scene. Experiments show that our approach can generate high quality images in high resolution while having flexibility of object-level control by using class-specific generators. Project page: https://yuheng-li.github.io/CollageGAN/
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »
-
Label noise in real-world datasets encodes wrong correlation patterns and impairs the generalization of deep neural networks (DNNs). It is critical to find efficient ways to detect corrupted patterns. Current methods primarily focus on designing robust training techniques to prevent DNNs from memorizing corrupted patterns. These approaches often require customized training processes and may overfit corrupted patterns, leading to a performance drop in detection. In this paper, from a more data-centric perspective, we propose a training-free solution to detect corrupted labels. Intuitively, ``closer'' instances are more likely to share the same clean label. Based on the neighborhood information, we propose two methods: the first one uses ``local voting" via checking the noisy label consensuses of nearby features. The second one is a ranking-based approach that scores each instance and filters out a guaranteed number of instances that are likely to be corrupted. We theoretically analyze how the quality of features affects the local voting and provide guidelines for tuning neighborhood size. We also prove the worst-case error bound for the ranking-based method. Experiments with both synthetic and real-world label noise demonstrate our training-free solutions consistently and significantly improve most of the training-based baselines.