skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Long-tail Detection with Effective Class-Margins
Large-scale object detection and instance segmentation face a severe data imbalance. The finer-grained object classes become, the less frequent they appear in our datasets. However, at test-time, we expect a detector that performs well for all classes and not just the most frequent ones. In this paper, we provide a theoretical understanding of the long-trail detection problem. We show how the commonly used mean average precision evaluation metric on an unknown test set is bound by a margin-based binary classification error on a long-tailed object detection training set. We optimize margin-based binary classification error with a novel surrogate objective called \textbf{Effective Class-Margin Loss} (ECM). The ECM loss is simple, theoretically well-motivated, and outperforms other heuristic counterparts on LVIS v1 benchmark over a wide range of architecture and detectors.  more » « less
Award ID(s):
1845485
PAR ID:
10488057
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
European Conference on Computer Vision
Format(s):
Medium: X
Location:
Tel Aviv
Sponsoring Org:
National Science Foundation
More Like this
  1. The notion of margin loss has been central to the development and analysis of algorithms for binary classification. To date, however, there remains no consensus as to the analogue of the margin loss for multiclass classification. In this work, we show that a broad range of multiclass loss functions, including many popular ones, can be expressed in the relative margin form, a generalization of the margin form of binary losses. The relative margin form is broadly useful for understanding and analyzing multiclass losses as shown by our prior work (Wang and Scott, 2020, 2021). To further demonstrate the utility of this way of expressing multiclass losses, we use it to extend the seminal result of Bartlett et al. (2006) on classification calibration of binary margin losses to multiclass. We then analyze the class of Fenchel-Young losses, and expand the set of these losses that are known to be classification-calibrated. 
    more » « less
  2. null (Ed.)
    Contemporary machine learning applications often involve classification tasks with many classes. Despite their extensive use, a precise understanding of the statistical properties and behavior of classification algorithms is still missing, especially in modern regimes where the number of classes is rather large. In this paper, we take a step in this direction by providing the first asymptotically precise analysis of linear multiclass classification. Our theoretical analysis allows us to precisely character- ize how the test error varies over different training algorithms, data distributions, problem dimensions as well as number of classes, inter/intra class correlations and class priors. Specifically, our analysis reveals that the classification accuracy is highly distribution-dependent with different algorithms achieving optimal per- formance for different data distributions and/or training/features sizes. Unlike linear regression/binary classification, the test error in multiclass classification relies on intricate functions of the trained model (e.g., correlation between some of the trained weights) whose asymptotic behavior is difficult to characterize. This challenge is already present in simple classifiers, such as those minimizing a square loss. Our novel theoretical techniques allow us to overcome some of these chal- lenges. The insights gained may pave the way for a precise understanding of other classification algorithms beyond those studied in this paper. 
    more » « less
  3. Deep Neural Networks (DNNs) trained for classification tasks are vulnerable to adversarial attacks. But not all the classes are equally vulnerable. Adversarial training does not make all classes or groups equally robust as well. For example, in classification tasks with long-tailed distributions, classes are asymmetrically affected during adversarial training, with lower robust accuracy for less frequent classes. In this regard, we propose a provable robustness method by leveraging the continuous piecewise-affine (CPA) nature of DNNs. Our method can impose linearity constraints on the decision boundary, as well as the DNN CPA partition, without requiring any adversarial training. Using such constraints, we show that the margin between the decision boundary and minority classes can be increased in a provable manner. We also present qualitative and quantitative validation of our method for class-specific robustness. Our code is available at https: //github.com/Josuelmet/CROP 
    more » « less
  4. Object classification is a key element that enables effective decision-making in many autonomous systems. A more sophisticated system may also utilize the probability distribution over the classes instead of basing its decision only on the most likely class. This paper introduces new performance metrics: the absolute class error (ACE), expectation of absolute class error (EACE) and variance of absolute class error (VACE) for evaluating the accuracy of such probabilities. We test this metric using different neural network architectures and datasets. Furthermore, we present a new task-based neural network for object classification and compare its performance with a typical probabilistic classification model to show the improvement with threshold-based probabilistic decision-making. 
    more » « less
  5. Vanilla models for object detection and instance segmentation suffer from the heavy bias toward detecting frequent objects in the long-tailed setting. Existing methods address this issue mostly during training, e.g., by re-sampling or re- weighting. In this paper, we investigate a largely overlooked approach — post- processing calibration of confidence scores. We propose NORCAL, Normalized Calibration for long-tailed object detection and instance segmentation, a simple and straightforward recipe that reweighs the predicted scores of each class by its training sample size. We show that separately handling the background class and normalizing the scores over classes for each proposal are keys to achieving superior performance. On the LVIS dataset, NORCAL can effectively improve nearly all the baseline models not only on rare classes but also on common and frequent classes. Finally, we conduct extensive analysis and ablation studies to offer insights into various modeling choices and mechanisms of our approach. Our code is publicly available at https://github.com/tydpan/NorCal. 
    more » « less