skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Efficient Aggregation of Distributed Energy Resources
The rapid growth of distributed energy resources (DERs) is one of the most significant changes to electricity systems around the world. Examples of DERs include solar panels, small natural gas-fueled generators, combined heat and power plants, etc. Due to the small supply capacities of these DERs, it is impractical for them to participate directly in the wholesale electricity market. We study in this paper an efficient aggregation model where a profit-maximizing aggregator procures electricity from DERs, and sells them in the wholesale market. The interaction between the aggregator and the DER owners is modeled as a Stackelberg game: the aggregator adopts two-part pricing by announcing a participation fee and a per-unit price of procurement for each DER owner, and the DER owner responds by choosing her payoff-maximizing energy supplies. We show that our proposed model preserves full market efficiency, i.e., the social welfare achieved by the aggregation model is the same as that when DERs participate directly in the wholesale market.  more » « less
Award ID(s):
1832230
PAR ID:
10338570
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 60th IEEE Conference on Decision and Control (CDC)
Page Range / eLocation ID:
7064 to 7069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dispatching a large fleet of distributed energy resources (DERs) in response to wholesale energy market or regional grid signals requires solving a challenging disaggregation problem when the DERs are located within a distribution network. This manuscript presents a computationally tractable convex inner approximation for the optimal power flow (OPF) problem that characterizes a feeders aggregate DERs hosting capacity and enables a realtime, grid-aware dispatch of DERs for radial distribution networks. The inner approximation is derived by considering convex envelopes on the nonlinear terms in the AC power flow equations. The resulting convex formulation is then used to derive provable nodal injection limits, such that any combination of DER dispatches within their respective nodal limits is guaranteed to be AC admissible. These nodal injection limits are then used to construct a realtime, open-loop control policy for dispatching DERs at each location in the network to collectively deliver grid services. The IEEE-37 distribution network is used to validate the technical results and highlight various use-cases. 
    more » « less
  2. Distribution network safety should not be compromised when distributed energy resources (DERs) provide balancing services to the grid. Often DER coordination is achieved through an aggregator. Thus, it is necessary to develop network-safe coordination schemes between the distribution network operator (i.e., the utility) and the aggregator. In this work, we introduce a framework in which the utility computes and sends a constraint set on the aggregators’ control commands to the DERs. We propose a policy to adjust the charging/discharging power of distributed batteries, which allows them to be incorporated into the framework. Also, we propose a data-driven approach for the utility to construct a constraint set with probabilistic guarantees on network safety. The proposed approach allows the DERs to provide network- safe services without heavy communication requirements or invasion of privacy. Numerical simulations with distributed batteries and thermostatically controlled loads show that the proposed approach achieves the desired level of network safety and outperforms two benchmark algorithms. 
    more » « less
  3. null (Ed.)
    We consider decentralized scheduling of Distributed Energy Resources (DERs) in a day-ahead market that clears energy and reserves offered by both centralized generators and DERs. Recognizing the difficulty of scheduling transmission network connected generators together with distribution feeder connected DERs that have complex intertemporal preferences and dynamics, we propose a tractable distributed algorithm where DERs self-schedule based on granular Distribution Locational Marginal Prices (DLMPs) derived from LMPs augmented by distribution network costs. For the resulting iterative DER self-scheduling process, we examine the opportunity of DERs to engage in strategic behavior depending on whether DERs do or do not have access to detailed distribution feeder information. Although the proposed distributed algorithm is tractable on detailed real-life network models, we utilize a simplified T&D network model to derive instructive analytical and numerical results on the impact of strategic DER behavior on social welfare loss, and the distribution of costs and benefits to various market participants. 
    more » « less
  4. Abstract Prosumers adopt distributed energy resources (DER) to cover part of their own consumption and to sell surplus energy. Although individual prosumers are too dispersed to exert operational market power, they may collectively hold a strategic advantage over conventional generation in selecting DER capacity via aggregators. We devise a bilevel model to examine DER capacity sizing by a collective prosumer as a Stackelberg leader in an electricity industry where conventional generation may exert market power in operations. At the upper level, the prosumer chooses DER capacity in anticipation of lower-level operations by conventional generation and DER output. We demonstrate that exertion of market power in operations by conventional generation and the marginal cost of conventional generation affect DER investment by the prosumer in a nonmonotonic manner. Intuitively, in an industry where conventional generation exerts market power in operations similar to a monopoly (MO), the prosumer invests in more DER capacity than under perfectly competitive operations (PC) to take advantage of a high market-clearing price. However, if the marginal cost of conventional generation is high enough, then this intuitive result is reversed as the prosumer adopts more DER capacity under PC than under MO. This is because the high marginal cost of conventional generation prevents the market-clearing price from decreasing, thereby allowing for higher prosumer revenues. Moreover, competition relieves the chokehold on consumption under MO, which further incentivises the prosumer to expand DER capacity to capture market share. We prove the existence of a critical threshold for the marginal cost of conventional generation that leads to this counterintuitive result. Finally, we propose a countervailing regulatory mechanism that yields welfare-enhancing DER investment even in deregulated electricity industries. 
    more » « less
  5. As distributed energy resources (DERs) are widely deployed, DC packetized power microgrids have been considered as a promising solution to incorporate DERs effectively and steadily. In this paper, we consider a DC packetized power microgrid, where the energy is dispatched in the form of power packets with the assist of a power router. However, the benefits of the microgrid can only be realized when energy subscribers (ESs) equipped with DERs actively participate in the energy market. Therefore, peer-to-peer (P2P) energy trading is necessary in the DC packetized power microgrid to encourage the usage of DERs. Different from P2P energy trading in AC microgrids, the dispatching capability of the router needs to be considered in DC microgrids, which will complicate the trading problem. To tackle this challenge, we formulate the P2P trading problem as an auction game, in which the demander ESs submit bids to compete for power packets, and a controller decides the energy allocation and power packet scheduling. Analysis of the proposed scheme is provided, and its effectiveness is validated through simulation. 
    more » « less