skip to main content


Title: Scaffolding Game Design: Towards Tool Support for Planning Open-Ended Projects in an Introductory Game Design Class
One approach to teaching game design to students with a wide variety of disciplinary backgrounds is through team game projects that span multiple weeks, up to an entire term. However, open-ended, creative projects introduce a gamut of challenges to novice programmers. Our goal is to assist game design students with the planning stage of their projects. This paper describes our data collection process through three course interventions and student interviews, and subsequent analysis in which we learned students had difficulty expressing their creative vision and connecting the game mechanics to the intended player experience. We present these results as a step towards the goal of scaffolding the planning process for student game projects, supporting more creative ideas, clearer communication among team members, and a stronger understanding of human-centered design in software development.  more » « less
Award ID(s):
1917885
NSF-PAR ID:
10338630
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Visual Languages and Human-centered Computing Conference (VL/HCC)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ability to effectively work in teams is one of the desired outcomes of engineering and engineering technology programs. Unfortunately, working in teams is still challenging for many students. Rather than contributing to team projects, some students resort to social loafing. Social loafing tends to destroy both teamwork performance and individual learning, especially in solving ill-structured problems, such as design. Furthermore, a bad experience on a past team is a significant concern as it could generate negative feelings toward future team projects. Formation of collaborative teams is a critical first step in team-project-based design courses as team composition directly affects not only teamwork processes and outcomes, but also teamwork skills and experience. This NSF-IUSE sponsored project aims to enhance students’ teamwork experiences and teamwork learning through 1) understanding how to form better student design teams and 2) identifying exercises that will effectively improve team member collaboration. We do this by comparing student characteristics and design task characteristics with the quality of the design team outcome, and examining the resulting correlations. Student characteristics cover six categories: 1) background information, 2) work structure preferences, 3) personality, 4) ability, 5) motivation, and 6) attitude. Task characteristics and design team outcomes are characterized using the Creative Product Semantic Scale. In this article, we present correlations between student/team characteristics and design project outcome, and correlations between task characteristics and design project outcome for 2020-2021 senior design teams at two institutions. For both institutions, we will present correlations between individual student characteristics and team outcome. For one institution, we will also present correlation between team-level characteristics and team outcomes. 
    more » « less
  2. Research prior to 2005 found that no single framework existed that could capture the engineering design process fully or well and benchmark each element of the process to a commonly accepted set of referenced artifacts. Compounding the construction of a stepwise, artifact driven framework is that engineering design is typically practiced over time as a complex and iterative process. For both novice and advanced students, learning and applying the design process is often cumulative, with many informal and formal programmatic opportunities to practice essential elements. The Engineering Design Process Portfolio Scoring Rubric (EDPPSR) was designed to apply to any portfolio that is intended to document an individual or team driven process leading to an original attempt to design a product, process, or method to provide the best and most optimal solution to a genuine and meaningful problem. In essence, the portfolio should be a detailed account or “biography” of a project and the thought processes that inform that project. Besides narrative and explanatory text, entries may include (but need not be limited to) drawings, schematics, photographs, notebook and journal entries, transcripts or summaries of conversations and interviews, and audio/video recordings. Such entries are likely to be necessary in order to convey accurately and completely the complex thought processes behind the planning, implementation, and self-evaluation of the project. The rubric is comprised of four main components, each in turn comprised of three elements. Each element has its own holistic rubric. The process by which the EDPPSR was created gives evidence of the relevance and representativeness of the rubric and helps to establish validity. The EDPPSR model as originally rendered has a strong theoretical foundation as it has been developed by reference to the literature on the steps of the design process through focus groups and through expert review by teachers, faculty and researchers in performance based, portfolio rubrics and assessments. Using the unified construct validity framework, the EDDPSR’s validity was further established through expert reviewers (experts in engineering design) providing evidence supporting the content relevance and representativeness of the EDPPSR in representing the basic process of engineering design. This manuscript offers empirical evidence that supports the use of the EDPPSR model to evaluate student design-based projects in a reliable and valid manner. Intra-class correlation coefficients (ICC) were calculated to determine the inter-rater reliability (IRR) of the rubric. Given the small sample size we also examined confidence intervals (95%) to provide a range of values in which the estimate of inter-reliability is likely contained. 
    more » « less
  3. Abstract While psychological safety is a consistent, generalizable, and multilevel predictor of outcomes in team performance across fields that can positively impact the creative process, there have been limited investigations of psychological safety in the engineering domain. Without this knowledge, we do not know whether fostering psychological safety in a team environment is important for specific engineering design outputs from concept generation and screening practices. This study provides one of the first attempts at addressing this research gap through an empirical study with 69 engineering design student teams over the course of 4- and 8-week design projects. Specifically, we sought to identify the role of psychological safety on the number and quality (judged by goodness) of ideas generated. In addition, we explored the role of psychological safety on ownership bias and goodness in the concept screening process. The results of the study identified that while psychological safety was negatively related to the number of ideas a team developed, it was positively related to the quality (goodness) of the ideas developed. This result indicates that while psychological safety may not increase team productivity in terms of the number of ideas produced, it may impact team effectiveness in coming up with viable candidate ideas to move forward in the design process. In addition, there was no relationship between psychological safety and ownership bias during concept screening. These findings provide quantitative evidence on the role of psychological safety on engineering team idea production and identify areas for further study. 
    more » « less
  4. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State-Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less
  5. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less