skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Roboviz: A Game-Centered Project for Information Visualization Education
Due to their pedagogical advantages, large final projects in information visualization courses have become standard practice. Students take on a client–real or simulated–a dataset, and a vague set of goals to create a complete visualization or visual analytics product. Unfortunately, many projects suffer from ambiguous goals, over or under-constrained client expectations, and data constraints that have students spending their time on non-visualization problems (e.g., data cleaning). These are important skills, but are often secondary course objectives, and unforeseen problems can majorly hinder students. We created an alternative for our information visualization course: Roboviz, a real-time game for students to play by building a visualization-focused interface. By designing the game mechanics around four different data types, the project allows students to create a wide array of interactive visualizations. Student teams play against their classmates with the objective to collect the most (good) robots. The flexibility of the strategies encourages variability, a range of approaches, and solving wicked design constraints. We describe the construction of this game and report on student projects over two years. We further show how the game mechanics can be extended or adapted to other game-based projects.  more » « less
Award ID(s):
1815760
PAR ID:
10403108
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
Volume:
29
Issue:
1
ISSN:
1077-2626
Page Range / eLocation ID:
268-277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less
  2. One approach to teaching game design to students with a wide variety of disciplinary backgrounds is through team game projects that span multiple weeks, up to an entire term. However, open-ended, creative projects introduce a gamut of challenges to novice programmers. Our goal is to assist game design students with the planning stage of their projects. This paper describes our data collection process through three course interventions and student interviews, and subsequent analysis in which we learned students had difficulty expressing their creative vision and connecting the game mechanics to the intended player experience. We present these results as a step towards the goal of scaffolding the planning process for student game projects, supporting more creative ideas, clearer communication among team members, and a stronger understanding of human-centered design in software development. 
    more » « less
  3. As enrollment in CS programs have risen, it has become increasingly difficult for teaching staff to provide timely and detailed guidance on student projects. To address this, instructors use automated assessment tools to evaluate students' code and processes as they work. Even with automation, understanding students' progress, and more importantly, if students are making the 'right' progress toward the solution is challenging at scale. To help students manage their time and learn good software engineering processes, instructors may create intermediate deadlines, or milestones, to support progress. However, student's adherence to these processes is opaque and may hinder student success and instructional support. Better understanding of how students follow process guidance in practice is needed to identify the right assignment structures to support development of high-quality process skills. We use data collected from an automated assessment tool, to calculate a set of 15 progress indicators to investigate which types of progress are being made during four stages of two projects in a CS2 course. These stages are split up by milestones to help guide student activities. We show how looking at which progress indicators are triggered significantly more or less during each stage validates whether students are adhering to the goals of each milestone. We also find students trigger some progress indicators earlier on the second project suggesting improving processes over time. 
    more » « less
  4. Merkle, Larry; Doyle, Maureen; Sheard, Judithe; Soh, Leen-Kiat; Dorn, Brian (Ed.)
    As enrollment in CS programs have risen, it has become increasingly difficult for teaching staff to provide timely and detailed guidance on student projects. To address this, instructors use automated assessment tools to evaluate students’ code and processes as they work. Even with automation, understanding students’ progress, and more importantly, if students are making the ‘right’ progress toward the solution is challenging at scale. To help students manage their time and learn good software engineering processes, instructors may create intermediate deadlines, or milestones, to support progress. However, student’s adherence to these processes is opaque and may hinder student success and instructional support. Better understanding of how students follow process guidance in practice is needed to identify the right assignment structures to support development of high-quality process skills. We use data collected from an automated assessment tool, to calculate a set of 15 progress indicators to investigate which types of progress are being made during four stages of two projects in a CS2 course. These stages are split up by milestones to help guide student activities. We show how looking at which progress indicators are triggered significantly more or less during each stage validates whether students are adhering to the goals of each milestone. We also find students trigger some progress indicators earlier on the second project suggesting improving processes over time. 
    more » « less
  5. As part of the General Education (GenEd) program at the Pennsylvania State University, we offer an experimental course on flow visualization to undergraduate students. This course aims to bridge the gap between two distinct areas of knowledge: the art and science of fluid mechanics. Designed for students with minimal to no background in photography or physics, this nonmathematical course provides an opportunity for students to explore a variety of aesthetic issues through practical and creative assignments. The course consists of lectures on photography skills, fluid physics, visualization techniques, critique sessions, and a guest lecture. Assignments consist of images paired with written technical reports, and critique sessions. The primary objective of the course is "integrative thinking". Other course objectives evaluated through students’ assignments and projects are "creative thinking" and “effective communication”. Some samples of student work are presented, and the outcomes are discussed. This course proved to be very successful in attracting all students (male and female) in both engineering and non-engineering majors. 
    more » « less