skip to main content


Title: Principles for collaborative risk communication: Reducing landslide losses in Puerto Rico
Landslides are frequent and damaging natural hazards that threaten the people and the natural and built environments of Puerto Rico. In 2017, more than 70,000 landslides were triggered across the island by heavy rainfall from Hurricane María, prompting requests by local professionals for landslide education and outreach materials. This article describes a novel collaborative risk communication framework that was developed to meet those requests and shaped the creation of a Spanish- and English-language Landslide Guide for Residents of Puerto Rico. Collaborative risk communication is defined here as an iterative process guided by a set of principles for the interdisciplinary coproduction of hazards information and communication products by local and external stakeholders. The process that supports this form of risk communication involves mapping out the risk communication stakeholders in the at-risk or disaster-affected location—in this case Puerto Rico—and collaborating over time to address a shared challenge, such as landslide hazards. The approach described in this article involved the formation of a core team of government and university partners that expanded in membership to conduct collaborative work with an informal network of hazards professionals from diverse sectors in Puerto Rico. The following principles guided this process: cultural competence, ethical engagement, listening, inclusive decision making, empathy, convergence research, nested mentoring, adaptability, and reciprocity. This article contributes to the field of risk communication and emergency management by detailing these principles and the associated process in order to motivate collaborative risk communication efforts in different geographic and cultural contexts. While the work described here focuses on addressing landslides, the principles and process are transferable to other natural, technological, and willful human-caused hazards. They may also serve as a roadmap for future partnerships among government agencies and university researchers to inform the cocreation of science education and outreach tools.  more » « less
Award ID(s):
1635593
NSF-PAR ID:
10338637
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Emergency Management
Volume:
19
Issue:
8
ISSN:
1543-5865
Page Range / eLocation ID:
41 to 61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The devastation caused by recent natural disasters, such as earthquakes, tsunamis, and hurricanes, has increased awareness regarding the importance of providing interdisciplinary solutions to complex infrastructure challenges. In October 2018, the University of Puerto Rico received a Hispanic Serving Institution (HSI) collaborative award from the National Science Foundation (NSF) to develop an integrated curriculum on resilient and sustainable infrastructure. The project titled “Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP) aims to educate future environmental designers and engineers to design and build a more resilient and sustainable infrastructure for Puerto Rico. This paper presents the design, initial implementation, and assessment of a curriculum encompassing synergistic interactions among these four domains: integrated project delivery, user-centered design, interdisciplinary problem-solving, and sustainability and resiliency. The project seeks to foster interdisciplinary problem-solving skills involving architects, engineers and construction managers, in order to better prepare them to face and provide solutions to minimize the impact of extreme natural environment events on infrastructure. The new curriculum stresses on problem-settings, the role that participants have on defining the characteristics of the problems that have to be solved, learning in action, reflecting on the process, and communication between the different stakeholders. This multisite and interdisciplinary program provides students with the necessary support, knowledge, and skills necessary to design and build resilient and sustainable infrastructure. This instructional endeavor consists of four courses designed to reduce gradually the difference between what students are able to accomplish with support structures and what students are able to accomplish on their own. To maximize and enhance the educational experience, the program blends a technology-infused classroom learning with broad co-curricular opportunities such as site visits, undergraduate research, and internships. As students advance in the program, they will be exposed and required to perform increasingly complex tasks. During the first year of the program, the following outcomes were achieved: 1) implementation of the faculty teamwork process to develop courses and analyze cases from an interdisciplinary perspective, 2) development and approval of an interdisciplinary curriculum on resilient and sustainable infrastructure, 3) development of case studies on situations associated with disaster and interdisciplinary responses, 4) development of a case study database, 5) establishment of an Advisory Board with government agency representatives and faculty, and 6) recruitment and enrollment of 30 students as the first RISE-UP cohort. In summary, the body of knowledge acquired from this project can serve as a model that can be replicated to develop and enhance academic programs at other institutions. 
    more » « less
  2. After a natural disaster, multiple disciplines need to come together to rebuild the damaged infrastructure using new paradigms. For instance, urgent restoration of services demand to abridge the projects’ schedule and provide innovative solutions, thus making collaboration and integration essential for the project’s success. Commonly, the academic preparation of scholars on infrastructure-related disciplines takes place in isolated professional domains, rarely tackling interdisciplinary problems and/or learn from the systematic research of previous experiences. In Puerto Rico, the aftermath of Hurricanes Irma and Maria has heightened awareness regarding the education on infrastructure-related disciplines to provide transdisciplinary solutions to pertinent complex challenges. This taxing context compels the academia to train a new cadre of professionals properly prepared in those STEM disciplines. Further, current public awareness of the vulnerability of the existing infrastructure creates an opportunity to recruit and prepare students to become those much-needed professionals. The present work offers the conceptual framework of a collaborative effort among Architecture, Engineering, and Construction (AEC) to develop an interdisciplinary program in resilient and sustainable infrastructure. The framework includes the development of transformational pedagogic interventions and changes that will challenge the disciplinary splits among AEC. The framework targets values and skills for inter and transdisciplinary problem solving, as well as helps smooth the transition from academic education to professional practice. To implement the initiative, the project created a collaborative platform among three campuses of the University of Puerto Rico System. Each of these campuses offers a different educational component relevant to the enriching educational initiative. We expect this approach to create a new breed of professionals ready to face the challenges posed for the development of robust infrastructure. The strategy fosters readiness in environmental design in engineering and construction through evidence-based design and inter/transdisciplinary problem solving. Thus, this research contributes to the body of knowledge by presenting a collaborative effort to train future professionals to design and build a robust infrastructure that can overcome the impact of major natural catastrophes. 
    more » « less
  3. After a natural disaster, multiple disciplines need to come together to rebuild the damaged infrastructure using new paradigms. For instance, urgent restoration of services demand to abridge the projects’ schedule and provide innovative solutions, thus making collaboration and integration essential for the project’s success. Commonly, the academic preparation of scholars on infrastructure-related disciplines takes place in isolated professional domains, rarely tackling interdisciplinary problems and/or learn from the systematic research of previous experiences. In Puerto Rico, the aftermath of Hurricanes Irma and Maria has heightened awareness regarding the education on infrastructure-related disciplines to provide transdisciplinary solutions to pertinent complex challenges. This taxing context compels the academia to train a new cadre of professionals properly prepared in those STEM disciplines. Further, current public awareness of the vulnerability of the existing infrastructure creates an opportunity to recruit and prepare students to become those much-needed professionals. The present work offers the conceptual framework of a collaborative effort among Architecture, Engineering, and Construction (AEC) to develop an interdisciplinary program in resilient and sustainable infrastructure. The framework includes the development of transformational pedagogic interventions and changes that will challenge the disciplinary splits among AEC. The framework targets values and skills for inter and transdisciplinary problem solving, as well as helps smooth the transition from academic education to professional practice. To implement the initiative, the project created a collaborative platform among three campuses of the University of Puerto Rico System. Each of these campuses offers a different educational component relevant to the enriching educational initiative. We expect this approach to create a new breed of professionals ready to face the challenges posed for the development of robust infrastructure. The strategy fosters readiness in environmental design in engineering and construction through evidence-based design and inter/transdisciplinary problem solving. Thus, this research contributes to the body of knowledge by presenting a collaborative effort to train future professionals to design and build a robust infrastructure that can overcome the impact of major natural catastrophes. 
    more » « less
  4. Ingenuity for El Ingenio is a case study to address the challenges that marginalized communities in Puerto Rico suffer, mostly from natural hazards, due to settlements in high-risk areas and deteriorating infrastructure. The case study was developed by an interdisciplinary group of students from the University of Puerto Rico - Río Piedras School of Architecture and students from the Department of Civil Engineering and Surveying and the Department of Electrical Engineering at the University of Puerto Rico - Mayagüez, as part of the course “Design-Build Project Delivery” in the RISE-UP program. The project contemplated spaces for a family/group of four people, in the neighborhood Ingenio in Toa Baja, Puerto Rico, which is a community exposed to multiple natural hazards including hurricanes, earthquakes, and floods. The design parameters for the project included a set budget of $40,000 USD for the construction of four temporary housing units, requirement to withstand the impact of multiple natural hazards, as well as being simple to build and be able to operate independent to power and water grids during an emergency. The resulting design provides 270 sq ft. of usable space and can partially function off the grid due to solar energy generation and water storage. Local materials were implemented, and a manual of components and suggested construction methods was developed. This experience showcases the benefits that an interdisciplinary-integrated approach to infrastructure design can have on producing rapid and efficient design solutions to challenges caused by natural hazards, in resilient and sustainable ways. 
    more » « less
  5. More than 1.6 billion people worldwide live in informally constructed houses, many of which are reinforced with concrete. Patterns of past earthquake damage suggest that these homes have significant seismic vulnerabilities, endangering their occupants. The characteristics of these houses vary widely with local building practices. In addition, these vulnerabilities are potentially exacerbated by incremental construction practices and building practices that address wind/flood risk in multi-hazard environments. Yet, despite the ubiquity of this type of construction, there have not been efforts to systematically assess the seismic risks to support risk-reducing design and construction strategies. In this study, we developed a method to assess the seismic collapse capacity of informally constructed housing that accounts for local building practices and materials, quantifying the effect of building characteristics on collapse risk. We exercise the method to assess seismic performance of housing in the US. Caribbean Island of Puerto Rico, which has high seismic hazard and experiences frequent hurricanes. This analysis showed that heavy construction, often due to the addition of a second story, and the presence of an open ground story leads to a high collapse risk. Severely corroded steel bars could also worsen performance. Although houses with infill performed better than those with an open ground story, confined masonry construction techniques produced a major reduction in collapse risk when compared to infilled or open-frame construction. Infill construction with partial height walls performed very poorly. Well-built reinforced concrete column jackets and the addition of infill in open first-story bays can reduce the greater risks of openground- story houses. These findings, which are quantified in the results portion of this article, are intended to support the development of design and construction recommendations for safer housing.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less