skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Puerto Rican Students Rising in STEM: Findings from a Multicampus Collaborative CURE Program to Promote Student Success
Although Hispanic population is growing rapidly, Latino students earn fewer STEM degrees than their peers. Therefore, it is mandatory to implement strategies that improve STEM retention and graduation rates for Hispanic students. There is little research about the ways in which multicampus collaborative CUREs combined with additional academic support, affect low-income, Hispanic students and none that focus solely on Puerto Rican students in STEM. Puerto Rico (PR) has a 99% Hispanic population; thus, it is imperative to include PR in education research literature. This study sought to examine the impacts of the Research for Improved Student Experiences (RISE) in STEM program at two campuses of the Inter American University of Puerto Rico. The program included multicampus collaborative CUREs, academic advising, and peer mentoring using quasi-experimental design. Impact assessment included psychosocial metrics such as self-efficacy, science identity and sense of belonging in a pre/posttest design. These findings were triangulated with the differences between treatment and control for retention, pass rate, and course grades. The findings revealed statistically significant improvements on all metrics. This study’s findings support multicampus collaborative CUREs, academic advising, and peer mentoring as useful and effective strategies for improving outcomes for low-income Hispanic students in Puerto Rico.  more » « less
Award ID(s):
2114401
PAR ID:
10472893
Author(s) / Creator(s):
;
Editor(s):
Alvares, Stacy
Publisher / Repository:
The American Society for Cell Biology
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
22
Issue:
4
ISSN:
1931-7913
Page Range / eLocation ID:
1-10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges. 
    more » « less
  2. null (Ed.)
    Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges. 
    more » « less
  3. Abstract

    The purpose of this longitudinal investigation was to examine the effectiveness of a comprehensive, integrated curricular and co-curricular program designed to build community, provide academic and social support, and promote engagement in academically purposeful activities resulting in more equitable environments for historically underrepresented, low-income science, technology, engineering, and mathematics (STEM) information technology (IT) students. The study also focused on the role that the sense of belonging and academic hope play in enhancing persistence to degree completion. Program participants had significantly higher persistence rates compared to a matched comparison group. Additionally, STEM-specific belonging and academic hope significantly predicted students’ intentions to persist to degree completion in IT. A major finding was that STEM domain–specific belonging was a stronger predictor of persistence than general belonging. Our investigation has implications for the role that cohort-based programs, industry engagement, peer mentoring, proactive advising, undergraduate research opportunities, career preparation, and leveraging need-based financial aid play in ensuring equity in STEM.

     
    more » « less
  4. null (Ed.)
    There has been a nationwide effort to increase the number, caliber, and diversity of the science, technology, engineering, and mathematics (STEM) workforce. Research on student development shows that while there is a need, providing financial aid alone is not a sufficient factor for academic success of low-income academically talented college students. Thus, Hostos Community College has recently created the NSF-funded Hostos Engineering Academic Talent (HEAT) Scholarship Program which offers its scholars financial support and experience with a combined mentoring model where students work with faculty and peers during the academic year. This research then systematically investigated the impact of a combined faculty- and peer-mentorship approach with a population not yet studied, undergraduate STEM students at minority-serving community colleges. Preliminary data indicates that the combined mentoring approach has positive effects on scholar’s academic performance and STEM identity. The findings are expected to be generalizable to other populations, and hence provide an opportunity to expand the combined mentorship model to other STEM programs at a variety of institutions whose students could benefit from its implementation. 
    more » « less
  5. An abundance of literature demonstrates that women’s and minorities’ sense of belonging, or lack thereof, influences their academic performance and persistence in STEM education and careers. To address this problem, we developed a holistic, socio-culturally responsive peer-mentoring program that provided an academic, institutional, and social support system for first-year engineering students. The purpose of this program, Promoviendo el Éxito Estudiantil a través de un Sistema de Apollo (PromESA), is to increase students’ sense of belonging and, by extension, their persistence and graduation rates in engineering, particularly for Latinx students and their intersectionalities. The pilot mentoring program was integrated into a first-year sequence of courses where students would meet with their peer-mentors (i.e., Compañeros/as) during class time. Compañeros/as (Compas for short) provided their mentees with assistance such as tutoring, advising, directing them to available university services and, equally important, emotional support through building friendship, confirmation, and affirmation to improve the students’ sense of belonging. The research seeks to identify academic, institutional, and social support elements that positively influence students’ sense of belonging and explore how integrating Latinx cultural assets and values influence Latinx students’ perceptions of engineering. Findings from the first year of implementation reveal that participants with peer-mentors from their academic major reported a higher sense of belonging than participants with peer-mentors from other academic majors. Also, participants reported receiving social support (i.e., peer and classroom), regardless of academic major. Participant feedback was mixed, with some reporting that peer-mentoring was a key contributor to their sense of belonging while others reported that it contributed somewhat to their sense of belonging and a few reported that it did not contribute to their sense of belonging at all. 
    more » « less