skip to main content


Title: Emission kinetics of HITC laser dye on top of arrays of Ag nanowires
Abstract We have grown arrays of silver nanowires in pores of anodic alumina membranes (metamaterials with hyperbolic dispersion at λ  ≥ 615 nm), spin coated them with the dye-doped polymer (HITC:PMMA), and studied the rates of radiative and nonradiative relaxation as well as the concentration quenching (Förster energy transfer to acceptors). The results were compared to those obtained on top of planar Ag films and glass (control samples). The strong spatial inhomogeneity of emission kinetics recorded in different spots across the sample and strong inhibition of the concentration quenching in arrays of Ag nanowires are among the most significant findings of this study.  more » « less
Award ID(s):
1830886 1856515
NSF-PAR ID:
10338685
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanophotonics
Volume:
10
Issue:
16
ISSN:
2192-8614
Page Range / eLocation ID:
4027 to 4033
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Light‐induced self‐assembly offers a new route to build mesoscale optical matter arrays from nanoparticles (NPs), yet the low stability of optical matter systems limits the assembly of large‐scale NP arrays. Here it is shown that the interferometric optical fields created by illuminating a single Ag nanowire deposited on a coverslip can enhance the electrodynamic interactions among NPs. The Ag nanowire serves as a plasmonic antenna to shape the incident laser beam and guide the optical assembly of colloidal metal (Ag and Au) and dielectric (polystyrene) NPs in solution. By controlling the laser polarization direction, both the mesoscale interactions among multiple NPs and the near‐field coupling between the NPs and nanowire can be tuned, leading to large‐scale and stable optical matter arrays consisting of up to 60 NPs. These results demonstrate that single Ag nanowires can serve as multifunctional antennas to guide the optical trapping and binding of multiple NPs and provide a new strategy to control electrodynamic interactions using hybrid nanostructures.

     
    more » « less
  2. Abstract

    Transparent microelectrodes have recently emerged as a promising approach for crosstalk‐free multifunctional electrical and optical biointerfacing. High‐performance flexible platforms that allow seamless integration with soft tissue systems for such applications are urgently needed. Here, silver nanowires (Ag NWs)‐based transparent microelectrode arrays (MEAs) and interconnects are designed to meet this demand. The nanowire networks exhibit a high optical transparency >90.0% at 550 nm, and superior mechanical stability up to 100,000 bending cycles at 5 mm radius. The Ag NWs microelectrodes preserve low normalized electrochemical impedance of 3.4–15 Ω cm2at 1 kHz, and the interconnects demonstrate excellent sheet resistance (Rsh) of 4.1–25 Ω sq−1. In vivo histological analysis reveals that the Ag NWs structures are biocompatible. Studies on Langendorff‐perfused mouse and rat hearts demonstrate that the Ag NWs MEAs enable high‐fidelity real‐time monitoring of heart rhythm during co‐localized optogenetic pacing and optical mapping. This proof‐of‐concept work illustrates that the solution‐processed, transparent, and flexible Ag NWs structures are a promising candidate for the next‐generation of large‐area multifunctional biointerfaces for interrogating complex biological systems in basic and translational research.

     
    more » « less
  3. Abstract

    Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk‐free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high‐fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold‐coated silver nanowires (Au–Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au–Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2–7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.

     
    more » « less
  4. null (Ed.)
    Gallium oxide (Ga 2 O 3 ) and its most stable modification, monoclinic β-Ga 2 O 3 , is emerging as a primary material for power electronic devices, gas sensors and optical devices due to a high breakdown voltage, large bandgap, and optical transparency combined with electrical conductivity. Growth of β-Ga 2 O 3 is challenging and most methods require very high temperatures. Nanowires of β-Ga 2 O 3 have been investigated extensively as they might be advantageous for devices such as nanowire field effect transistors, and gas sensors benefiting from a large surface to volume ratio, among others. Here, we report a synthesis approach using a sulfide precursor (Ga 2 S 3 ), which requires relatively low substrate temperatures and short growth times to produce high-quality single crystalline β-Ga 2 O 3 nanowires in high yields. Even though Au- or Ag-rich nanoparticles are invariably observed at the nanowire tips, they merely serve as nucleation seeds while the nanowire growth proceeds via supply and local oxidation of gallium at the substrate interface. Absorption and cathodoluminescence spectroscopy on individual nanowires confirms a wide bandgap of 4.63 eV and strong luminescence with a maximum ∼2.7 eV. Determining the growth process, morphology, composition and optoelectronic properties on the single nanowire level is key to further application of the β-Ga 2 O 3 nanowires in electronic devices. 
    more » « less
  5. null (Ed.)
    A number of complementary, synergistic advances are reported herein. First, we describe the ‘first-time’ synthesis of ultrathin Ru 2 Co 1 nanowires (NWs) possessing average diameters of 2.3 ± 0.5 nm using a modified surfactant-mediated protocol. Second, we utilize a combination of quantitative EDS, EDS mapping (along with accompanying line-scan profiles), and EXAFS spectroscopy results to probe the local atomic structure of not only novel Ru 2 Co 1 NWs but also ‘control’ samples of analogous ultrathin Ru 1 Pt 1 , Au 1 Ag 1 , Pd 1 Pt 1 , and Pd 1 Pt 9 NWs. We demonstrate that ultrathin NWs possess an atomic-level geometry that is fundamentally dependent upon their intrinsic chemical composition. In the case of the PdPt NW series, EDS mapping data are consistent with the formation of a homogeneous alloy, a finding further corroborated by EXAFS analysis. By contrast, EXAFS analysis results for both Ru 1 Pt 1 and Ru 2 Co 1 imply the generation of homophilic structures in which there is a strong tendency for the clustering of ‘like’ atoms; associated EDS results for Ru 1 Pt 1 convey the same conclusion, namely the production of a heterogeneous structure. Conversely, EDS mapping data for Ru 2 Co 1 suggests a uniform distribution of both elements. In the singular case of Au 1 Ag 1 , EDS mapping results are suggestive of a homogeneous alloy, whereas EXAFS analysis pointed to Ag segregation at the surface and an Au-rich core, within the context of a core–shell structure. These cumulative outcomes indicate that only a combined consideration of both EDS and EXAFS results can provide for an accurate representation of the local atomic structure of ultrathin NW motifs. 
    more » « less