skip to main content


Search for: All records

Award ID contains: 1830886

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nanocolloids that are cumulatively referred to as nanocarbons, attracted significant attention during the last decade because of facile synthesis methods, water solubility, tunable photoluminescence, easy surface modification, and high biocompatibility. Among the latest development in this reserach area are chiral nanocarbons exemplified by chiral carbon dots (CDots). They are expected to have applications in sensing, catalysis, imaging, and nanomedicine. However, the current methods of CDots synthesis show often contradictory chemical/optical properties and structural information that required a systematic study with careful structural evaluation. Here, we investigate and optimize chiroptical activity and photoluminescence ofL‐andD‐CDots obtained by hydrothermal carbonization ofL‐andD‐cysteine, respectively. Nuclear magnetic resonance spectroscopy demonstrates that they are formed via gradual dehydrogenation and condensation reactions of the starting amino acid leading to particles with a wide spectrum of functional groups including aromatic cycles. We found that the chiroptical activity of CDots has an inverse correlation with the synthesis duration and temperature, whereas the photoluminescence intensity has a direct one, which is associated with degree of carbonization. Also, our studies show that the hydrothermal synthesis of cysteine in the presence of boric acid leads to the formation of CDots rather than boron nitride nanoparticles as was previously proposed in several reports. These results can be used to design chiral carbon‐based nanoparticles with optimal chemical, chiroptical, and photoluminescent properties.

     
    more » « less
  2. Abstract

    The generation of significant photocurrents observed in plasmonic metasurfaces is interesting from a fundamental point of view and promising for applications in plasmon-based electronics and plasmonic sensors with compact electrical detection. We show that photoinduced voltages in strongly modulated plasmonic surfaces demonstrate a highly asymmetric angular dependence with polarity switching around the plasmon resonance conditions. The effects are tentatively attributed to coupling between localized and propagating plasmons.

     
    more » « less
  3. Abstract

    As lasers get more and more miniaturized and their dimensions become comparable to the wavelength, two interconnected phenomena take place: the fraction of spontaneous radiation going into a specific laser mode (β‐factor) increases and can ultimately reach unity, while the radiative lifetime gets shortened by the Purcell factorFp. Often it is assumed that an increase of these two factors, along with the quality factor (Q‐factor), almost invariably causes reduction of the lasing threshold. This assumption is tested on various photonic and plasmonic lasers, demonstrating that, while there is obvious correlation between the aforementioned factors and the laser threshold, the dependence is far from being straightforward and omnipresent. Depending on specific laser material and geometry, the threshold can decrease, increase, or stay unchanged whenβ‐factor,Q‐factor, andFpincrease. For the most part, the reduction of threshold is achieved simply by reducing the laser volume and this volume reduction can concurrently cause the increase inβ‐factor and/or Purcell factor, but it would be imprudent to say that the increase in either of these factors is the cause of the threshold reduction.

     
    more » « less
  4. Amphiphilic complexes with luminescent rare earth metal ions suitable for Lanmuir-Blodgett (LB) deposition have been synthesized. LB monolayers with closely packed Eu complexes deposited directly on silver demonstrate significant far-field emission in contrast to the theoretical predictions of full quenching. Angular radiation and polarization patterns of the electric and magnetic dipole emission of Eu3+point to a high excitation efficiency of surface plasmon polaritons. Different luminescent behavior of closely packed emitters in comparison to diluted systems is tentatively attributed to the collective state of emitters in LB layers formed via near-field coupling with surface plasmons.

     
    more » « less
  5. We studied effects of metal-dielectric substrates on photopolymerization of BITh monomer. We found that the rate of photopolymerization is getting higher if the monomer film is deposited on top of silver, gold, and lamellar structures. 
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  6. Abstract We have studied reflection spectra of dye-doped and undoped polymers deposited onto Ag and Au substrates and found anomalous dips in the UV spectral range. On top of Ag substrates, the λ ∼ 375 nm dips were observed in undoped PMMA, PVP, and PS polymers as well as PMMA doped with Rh590 and HITC laser dyes. In silver-based samples, the spectral positions of the observed reflection dips were close to singularities in the refractive indexes of surface plasmon polaritons (SPPs) propagating at the interface between Ag and polymer. The latter singularities can tentatively explain the λ ∼ 375 nm reflection dips, if the scattering of Ag and polymeric films is large enough to launch SPP without any prism or grating. The dips observed in reflection of Rh590:PMMA and HITC:PMMA on top of Au, were more pronounced than those on Ag, broader, shifted to shorter wavelengths, and their spectral positions had large standard deviations. Furthermore, no anomalous dips in gold-based samples were observed in the reflection spectra of undoped PMMA, PVP, and PS polymers, and a modest singularity in the SPP refractive index, predicted theoretically at λ ∼ 500 nm, cannot explain the dips in the UV reflection spectra observed experimentally. It appears likely that the origin of the reflection dips on top of Au substrates is different from that on top of Ag substrates. 
    more » « less
  7. Abstract We have studied effects of metal–dielectric substrates on photopolymerization of [2,2ʹ-Bi-1H-indene]-1,1ʹ-dione-3,3ʹ-diyl diheptanoate (BITh) monomer. We synthetized BITh and spin-coated it onto a variety of dielectric, metallic, and metal–dielectric substrates. The films were exposed to radiation of a UV–Visible Xe lamp, causing photo-polymerization of monomer molecules. The magnitude and the rate of the photo-polymerization were monitored by measuring the strength of the ~ 480 nm absorption band, which existed in the monomer but not in the polymer. Expectedly, the rate of photo-polymerization changed nearly linearly with the change of the pumping intensity. In contrast with our early study of photo-degradation of semiconducting polymer P3HT, the rate of photo-polymerization of BITh is getting modestly higher if the monomer film is deposited on top of silver separated from the monomer by a thin insulating MgF 2 layer preventing a charge transfer. This effect is partly due to a constructive interference of the incident and reflected light waves, as well as known in the literature effects of metal/dielectric substrates on a variety of spectroscopic and energy transfer parameters. At the same time, the rate of photopolymerization is getting threefold larger if monomer is deposited on Ag film directly and charge transfer is allowed. Finally, Au substrates cause modest (~ 50%) enhancement of both monomer film absorption and the rate of photo-polymerization. 
    more » « less
  8. null (Ed.)
    Abstract We have studied optical properties of single-layer and multi-fold nanoporous gold leaf (NPGL) metamaterials and observed highly unusual transmission spectra composed of two well-resolved peaks. We explain this phenomenon in terms of a surface plasmon absorption band positioned on the top of a broader transmission band, the latter being characteristic of both homogeneous “solid” and inhomogeneous “diluted” Au films. The transmission spectra of NPGL metamaterials were shown to be controlled by external dielectric environments, e.g. water and applied voltage in an electrochemical cell. This paves the road to numerous functionalities of the studied tunable and active metamaterials, including control of spontaneous emission, energy transfer and many others. 
    more » « less
  9. Abstract We have grown arrays of silver nanowires in pores of anodic alumina membranes (metamaterials with hyperbolic dispersion at λ  ≥ 615 nm), spin coated them with the dye-doped polymer (HITC:PMMA), and studied the rates of radiative and nonradiative relaxation as well as the concentration quenching (Förster energy transfer to acceptors). The results were compared to those obtained on top of planar Ag films and glass (control samples). The strong spatial inhomogeneity of emission kinetics recorded in different spots across the sample and strong inhibition of the concentration quenching in arrays of Ag nanowires are among the most significant findings of this study. 
    more » « less