Abstract We derive precise formulas for the archimedean Euler factors occurring in certain standard Langlands 𝐿-functions for unitary groups.In the 1980s, Paul Garrett, as well as Ilya Piatetski-Shapiro and Stephen Rallis (independently of Garrett), discovered integral representations of automorphic 𝐿-functions that are Eulerian but, in contrast to the Rankin–Selberg and Langlands–Shahidi methods, do not require that the automorphic representations to which the 𝐿-functions are associated are globally generic.Their approach, thedoubling method, opened the door to a variety of applications that could not be handled by prior methods.For over three decades, though, the integrals occurring in the Euler factors at archimedean places for unitary groups eluded precise computation, except under particular simplifications (such as requiring certain representations to be one-dimensional, as Garrett did in the first major progress on this computation and only prior progress for general signatures).We compute these integrals for holomorphic discrete series of general vector weights for unitary groups of any signature.This has consequences not only for special values of 𝐿-functions in the archimedean setting, but also for 𝑝-adic 𝐿-functions, where the corresponding term had remained open.
more »
« less
Chow groups and L -derivatives of automorphic motives for unitary groups, II.
Abstract In this article, we improve our main results from [LL21] in two directions: First, we allow ramified places in the CM extension $E/F$ at which we consider representations that are spherical with respect to a certain special maximal compact subgroup, by formulating and proving an analogue of the Kudla–Rapoport conjecture for exotic smooth Rapoport–Zink spaces. Second, we lift the restriction on the components at split places of the automorphic representation, by proving a more general vanishing result on certain cohomology of integral models of unitary Shimura varieties with Drinfeld level structures.
more »
« less
- PAR ID:
- 10338691
- Date Published:
- Journal Name:
- Forum of Mathematics, Pi
- Volume:
- 10
- ISSN:
- 2050-5086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For and finite groups, does there exist a 3-manifold group with as a quotient but no as a quotient? We answer all such questions in terms of the group cohomology of finite groups. We prove non-existence with topological results generalizing the theory of semicharacteristics. To prove existence of 3-manifolds with certain finite quotients but not others, we use a probabilistic method, by first proving a formula for the distribution of the (profinite completion of) the fundamental group of a random 3-manifold in the Dunfield-Thurston model of random Heegaard splittings as the genus goes to infinity. We believe this is the first construction of a new distribution of random groups from its moments.more » « less
-
Tauman Kalai, Yael (Ed.)In 2003, Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix multiplication. Previous work within this approach ruled out certain families of groups as a route to obtaining ω = 2, while other families of groups remain potentially viable. In this paper we turn our attention to matrix groups, whose usefulness within this framework was relatively unexplored. We first show that groups of Lie type cannot prove ω = 2 within the group-theoretic approach. This is based on a representation-theoretic argument that identifies the second-smallest dimension of an irreducible representation of a group as a key parameter that determines its viability in this framework. Our proof builds on Gowers' result concerning product-free sets in quasirandom groups. We then give another barrier that rules out certain natural matrix group constructions that make use of subgroups that are far from being self-normalizing. Our barrier results leave open several natural paths to obtain ω = 2 via matrix groups. To explore these routes we propose working in the continuous setting of Lie groups, in which we develop an analogous theory. Obtaining the analogue of ω = 2 in this potentially easier setting is a key challenge that represents an intermediate goal short of actually proving ω = 2. We give two constructions in the continuous setting, each of which evades one of our two barriers.more » « less
-
We prove a character formula for some closed fine Deligne–Lusztig varieties. We apply it to compute fixed points for fine Deligne–Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport–Zink spaces arising from the arithmetic Gan–Gross–Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.more » « less
An official website of the United States government

