skip to main content


Title: CONSTRUCTION AND TESTING OF SMALL-SCALE TRANSFORMABLE-HULL CONCEPT BOAT
Practically all marine vessels have fixed-geometry hulls. This limits their capabilities and high-performance regimes to a limited set of operational conditions. Having a transformable or adaptive hull structure can help maximize ship’s operational performance for various scenarios. In this work, a transformable concept boat is conceived that can change its configuration from monohull to twin-hulled configuration. A catamaran is desirable for carrying volumetric cargo or creating a large deck space that can serve, for example, as a launch pad for aircraft, while more compact monohulls can be more easily stored or operated in restricted environments. A monohull and a catamaran also have different stability, hydrodynamic, maneuvering and seakeeping characteristics. In the present effort, a small-scale model boat has been constructed with two hulls that can be brought together or separated using an expansion mechanism driven by a servo motor. This model setup has been equipped with propulsors, batteries, and control and communication modules for radio-controlled operations. In addition, a remote data acquisition system was assembled for measuring boat’s kinematic and powering characteristics. Results of initial tests with the small-scale transformable boat in an open water reservoir are reported and discussed in this paper.  more » « less
Award ID(s):
1800135
NSF-PAR ID:
10338719
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Mechanical Engineering Congress and Exposition IMECE2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrodynamic performance of ships can be greatly improved by the formation of air cavities under ship bottom with the purpose to decrease water friction on the hull surface. The air-cavity ships using this type of drag reduction are usually designed for and typically effective only in a relatively narrow range of speeds and hull attitudes and sufficient rates of air supply to the cavity. To investigate the behavior of a small-scale air-cavity boat operating under both favorable and detrimental loading and speed conditions, a remotely controlled model hull was equipped with a data acquisition system, video camera and onboard sensors to measure air-cavity characteristics, air supply rate and the boat speed, thrust and trim in operations on open-water reservoirs. These measurements were captured by a data logger and also wirelessly transmitted to a ground station and video monitor. The experimental air-cavity boat was tested in a range of speeds corresponding to length Froude numbers between 0.17 and 0.5 under three loading conditions, resulting in near zero trim and significant bow-up and bow-down trim angles at rest. Reduced cavity size and significantly increased drag occurred when operating at higher speeds, especially in the bow-up trim condition. The other objective of this study was to determine whether computational fluid dynamics simulations can adequately capture the recorded behavior of the boat and air cavity. A computational software Star-CCM+ was utilized with the VOF method employed for multi-phase flow, RANS approach for turbulence modeling, and economical mesh settings with refinements in the cavity region and near free surface. Upon conducting the mesh verification study, several experimental conditions were simulated, and approximate agreement with measured test data was found. Adaptive mesh refinement and time step controls were also applied to compare results with those obtained on the user-generated mesh. Adaptive controls improved resolution of complex shedding patterns from the air cavity but had little impact on overall results. The presented here experimental approach and obtained results indicate that both outdoor experimentation and computationally inexpensive modeling can be used in the process of developing air-cavity systems for ship hulls. 
    more » « less
  2. An effective method to reduce ship drag is to supply air under specially profiled bottom with the purpose to decrease wetted surface area of the hull and thus its water resistance. Although such systems have been installed on some vessels, the broad implementation of this technique has not yet occurred. A major problem is how to sustain air lubrication in rough water. Modeling of air-ventilated flows is challenging, but modern computational fluid dynamics tools can provide valuable insight. In this study, a wide-beam, shallow-draft hull with a bottom air cavity is considered. This hull imitates a semi-planing boat that can be used for fast transportation of cargo from large marine vessels to shallow shores. To simulate fluid flow around this hull in calm water and head waves, as well as heave and pitch motions of the boat, CFD software Star-CCM+ has been employed. It is found that the air cavity effectiveness decreases in waves; vertical accelerations exhibit high-frequency oscillations; and heave, pitch and vertical accelerations increase, while time-averaged heave, pitch and added drag show non-monotonic behavior with increasing wave amplitude. The air-cavity hull also demonstrates substantially lower vertical accelerations in waves in comparison with a similar solid hull without bottom recess. Time histories of kinematic parameters and distributions of flow field variables presented in this paper can be insightful for developers of air-cavity hulls. 
    more » « less
  3. Effective transportation performance measurement (TPM) benefits from ubiquitous transportation system monitoring both spatially and temporally. In the context of freight-oriented TPM, traditional devices such as inductive loops, cameras, manual counts, and so forth, may fail to provide comprehensive and high-resolution coverage, providing, for example, only volume counts for a small subset of links across a large network with no indication of trip linkages. New sources of big data from mobile sensors including on-board global positioning system (GPS) devices allow more comprehensive network coverage and insights into trip chaining behaviors. However, to gain actionable insights into system performance from large and noisy streams of mobile sensor data, it is necessary to mine it for relevant operational characteristics of the trucks it represents. Such characteristics include stop locations, stop duration, stop time of day, trip length, and trip duration. To address this methodological need, this paper presents three heuristic algorithms: “stop identification,”“path identification,” and “trip identification.” To address the issue of determining relevant operational characteristics, a multinomial logit (MNL) model approach is applied to determine the commodity carried based on the outputs of the heuristic algorithms. The MNL model is novel in that it relates operational characteristics to commodity carried thus filling a critical data gap that currently limits the development of advanced freight forecasting models. The set of models developed in this paper allow large-scale GPS data to be used for freight planning while maintaining levels of data anonymity that allow such data to be shared with public agencies. 
    more » « less
  4. Abstract

    Over the last few years, the concept of incorporating aerial vehicles into the urban environment for diverse purposes has attracted ample interest and investment. These purposes cover a broad spectrum of applications, from larger vehicles designed for passenger transport, to package delivery and inspection/surveillance missions performed by small unmanned drones. While these Advanced Air Mobility (AAM) operations have the potential to alleviate bottlenecks arising from saturated surface transportation networks, there are a number of challenges that need to be addressed to make these operations safe and viable. One challenge is predicting weather effects within the urban environment with the required level of spatiotemporal fidelity, which current operational weather models fail to provide due to the use of coarse grid spacings (a few kilometers) constrained by the predictive performance limitations of traditional computer architectures. Herein, we demonstrate how FastEddy®, a microscale model that exploits the accelerated nature of graphics processing units for high‐performance computing, can be used to understand and predict urban weather impacts from seasonal, day‐to‐day, diurnal, and sub‐hourly scales. To that end, we efficiently perform more than 50 telescoped simulations of microscale urban effects at street‐scale (5 m grid spacing) driven by realistic weather over a 20 km2region centered at the downtown area of Dallas, Texas. Our analyses demonstrate that urban‐weather interactions at the street‐scale are complex and tightly connected, which is of utmost relevance to AAM operations. These demonstrations reveal the capability of such models to provide real‐time weather hazard avoidance products tailored to capture microscale urban effects.

     
    more » « less
  5. When operating in direct evaporative cooling (DEC) mode, the amount of moisture added to a system can be controlled by frequently modulating water supply to the wet cooling media. Though many challenges arise due to geographical and site conditions, this concept can be applied to data centers to serve as a cost-effective alternative for maintaining the operating temperature of the facility at any weather condition. However, this method results in scale and mineral build up on the media because of an irregular water distribution. To prevent the scale formation, the operators allow the water supply continuously on the cooling media ultimately leading towards the high consumption of facility water and significantly deteriorating the Wet cooling media life. This challenge has been addressed for the first time by experimentally characterizing the vertically split distribution wet cooling media. These systems allow some section of the media to be wetted while other sections remain dry. Various configuration of vertically staged media may be achieved by dividing the full width of the media into two, three, four or more number of equal and unequal sections and providing individually controlled water distribution headers. To increase the number of stages and provide smooth transition from one stage to the other, a MATLAB code is written to find width of DEC media sections for known total width of the media and number of sections. Here, an experimental design to characterize the performance characteristics of a vertically split wet cooling media which has separate water distribution setup has been presented. Apart from relative humidity and temperature, other parameters of interests like pressure drop across the media and saturation efficiency of the rigid media are presented. In the unequal configuration, the media was tested for 0%, 33%, 66%, and 100%. This research provides a potential solution towards the limitation of direct evaporative cooling in terms of energy savings, facility water, reliability and contaminants. 
    more » « less