skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CONSTRUCTION AND TESTING OF SMALL-SCALE TRANSFORMABLE-HULL CONCEPT BOAT
Practically all marine vessels have fixed-geometry hulls. This limits their capabilities and high-performance regimes to a limited set of operational conditions. Having a transformable or adaptive hull structure can help maximize ship’s operational performance for various scenarios. In this work, a transformable concept boat is conceived that can change its configuration from monohull to twin-hulled configuration. A catamaran is desirable for carrying volumetric cargo or creating a large deck space that can serve, for example, as a launch pad for aircraft, while more compact monohulls can be more easily stored or operated in restricted environments. A monohull and a catamaran also have different stability, hydrodynamic, maneuvering and seakeeping characteristics. In the present effort, a small-scale model boat has been constructed with two hulls that can be brought together or separated using an expansion mechanism driven by a servo motor. This model setup has been equipped with propulsors, batteries, and control and communication modules for radio-controlled operations. In addition, a remote data acquisition system was assembled for measuring boat’s kinematic and powering characteristics. Results of initial tests with the small-scale transformable boat in an open water reservoir are reported and discussed in this paper.  more » « less
Award ID(s):
1800135
PAR ID:
10338719
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Mechanical Engineering Congress and Exposition IMECE2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrodynamic performance of ships can be greatly improved by the formation of air cavities under ship bottom with the purpose to decrease water friction on the hull surface. The air-cavity ships using this type of drag reduction are usually designed for and typically effective only in a relatively narrow range of speeds and hull attitudes and sufficient rates of air supply to the cavity. To investigate the behavior of a small-scale air-cavity boat operating under both favorable and detrimental loading and speed conditions, a remotely controlled model hull was equipped with a data acquisition system, video camera and onboard sensors to measure air-cavity characteristics, air supply rate and the boat speed, thrust and trim in operations on open-water reservoirs. These measurements were captured by a data logger and also wirelessly transmitted to a ground station and video monitor. The experimental air-cavity boat was tested in a range of speeds corresponding to length Froude numbers between 0.17 and 0.5 under three loading conditions, resulting in near zero trim and significant bow-up and bow-down trim angles at rest. Reduced cavity size and significantly increased drag occurred when operating at higher speeds, especially in the bow-up trim condition. The other objective of this study was to determine whether computational fluid dynamics simulations can adequately capture the recorded behavior of the boat and air cavity. A computational software Star-CCM+ was utilized with the VOF method employed for multi-phase flow, RANS approach for turbulence modeling, and economical mesh settings with refinements in the cavity region and near free surface. Upon conducting the mesh verification study, several experimental conditions were simulated, and approximate agreement with measured test data was found. Adaptive mesh refinement and time step controls were also applied to compare results with those obtained on the user-generated mesh. Adaptive controls improved resolution of complex shedding patterns from the air cavity but had little impact on overall results. The presented here experimental approach and obtained results indicate that both outdoor experimentation and computationally inexpensive modeling can be used in the process of developing air-cavity systems for ship hulls. 
    more » « less
  2. An effective method to reduce ship drag is to supply air under specially profiled bottom with the purpose to decrease wetted surface area of the hull and thus its water resistance. Although such systems have been installed on some vessels, the broad implementation of this technique has not yet occurred. A major problem is how to sustain air lubrication in rough water. Modeling of air-ventilated flows is challenging, but modern computational fluid dynamics tools can provide valuable insight. In this study, a wide-beam, shallow-draft hull with a bottom air cavity is considered. This hull imitates a semi-planing boat that can be used for fast transportation of cargo from large marine vessels to shallow shores. To simulate fluid flow around this hull in calm water and head waves, as well as heave and pitch motions of the boat, CFD software Star-CCM+ has been employed. It is found that the air cavity effectiveness decreases in waves; vertical accelerations exhibit high-frequency oscillations; and heave, pitch and vertical accelerations increase, while time-averaged heave, pitch and added drag show non-monotonic behavior with increasing wave amplitude. The air-cavity hull also demonstrates substantially lower vertical accelerations in waves in comparison with a similar solid hull without bottom recess. Time histories of kinematic parameters and distributions of flow field variables presented in this paper can be insightful for developers of air-cavity hulls. 
    more » « less
  3. Effective transportation performance measurement (TPM) benefits from ubiquitous transportation system monitoring both spatially and temporally. In the context of freight-oriented TPM, traditional devices such as inductive loops, cameras, manual counts, and so forth, may fail to provide comprehensive and high-resolution coverage, providing, for example, only volume counts for a small subset of links across a large network with no indication of trip linkages. New sources of big data from mobile sensors including on-board global positioning system (GPS) devices allow more comprehensive network coverage and insights into trip chaining behaviors. However, to gain actionable insights into system performance from large and noisy streams of mobile sensor data, it is necessary to mine it for relevant operational characteristics of the trucks it represents. Such characteristics include stop locations, stop duration, stop time of day, trip length, and trip duration. To address this methodological need, this paper presents three heuristic algorithms: “stop identification,”“path identification,” and “trip identification.” To address the issue of determining relevant operational characteristics, a multinomial logit (MNL) model approach is applied to determine the commodity carried based on the outputs of the heuristic algorithms. The MNL model is novel in that it relates operational characteristics to commodity carried thus filling a critical data gap that currently limits the development of advanced freight forecasting models. The set of models developed in this paper allow large-scale GPS data to be used for freight planning while maintaining levels of data anonymity that allow such data to be shared with public agencies. 
    more » « less
  4. To broaden and promote the applications of unmanned aerial vehicles (UAVs), UAVs with agile and omnidirectional mobility enabled by full or over actuation are a growing field of research. However, the balance of motion agility and force (energy) efficiency is challenging for a fixed UAV structure. This paper presents the new design of a transformable UAV, which can operate as a coplanar hexacopter or as an omnidirectional multirotor based on different operation modes. The UAV has 100% force efficiency for launching or landing tasks in the coplanar mode. In the omnidirectional mode, the UAV is fully actuated in the air for agile mobility in six degrees of freedom (DOFs). Models and control design are developed to characterize the motion of the transformable UAV. Simulation results are presented to validate the transformable UAV design and the enhanced UAV performance, compared with a fixed structure. 
    more » « less
  5. Recently, reflection interference fringe (RIF) and transmission fringe (TIF) techniques have been introduced to investigate the origin of far-field interference fringe (IF) formation and to determine a droplet's contact angle and thickness by measuring the fringe radius. In this study, characteristics of the IF technique are analyzed based on the RIF and TIF by varying the schematics, such as configuration (transmission/reflection), the droplet's side (left-hand side/right-hand side), and the substrate types (flat/prism). The analysis also investigates the refraction effect at the droplet edge and the maximum incidence and contact angles. The schematic variation shows that the widest contact angle range can be measured in a transmission configuration with droplet's right-hand side, and that the fringe radius decreases with incidence angles on a prism substrate, consistent with the recent observation. Refraction at the droplet edge causes the fringe radius to increase or decrease depending on the degree of refraction. Based on the characteristics study, it is revealed that the IF technique can determine nanometer-scale thicknesses below 100 nm on droplets, corresponding to ultra-small contact angles of less than 0.01°, with an extended working distance of 3000 mm and an optimized incidence angle, assuming a spherical profile. This finding is significant, as it demonstrates that the nanoscale thickness can be determined in situ under ambient conditions using a simple optical configuration, without requiring a sophisticated setup, such as a microscope. It is anticipated that the IF technique can be combined with other nanoscale thickness measurement techniques to enhance its measurement reliability. 
    more » « less