The increasing prevalence of high-performance computing data centers necessitates the adoption of cutting-edge cooling technologies to ensure the safe and reliable operation of their powerful microprocessors. Two-phase cooling schemes are well-suited for high heat flux scenarios because of their high heat transfer coefficients and their ability to enhance chip temperature uniformity. In this study, we perform experimental characterization and deep learning driven optimization of a commercial two-phase cold plate. The initial working design of the cold plate comprises a fin height of 3mm, fin thickness of 0.1 mm, and a channel width of 0.1 mm.A dielectric coolant, Novec /HFE 7000, was impinged into microchannel fins through impinging jets. A copper block simulated an electronic chip with a surface area of 1˝ × 1˝. The experiment was conducted with three different coolant inlet temperatures of 25◦ C, 36◦ C, and 48◦ C with varying heat flux levels ranging from 7.5 to 73.5 W cm2. The effects of coolant inlet temperatures and flow rate on the thermo-hydraulic performance of the cold plate were explored. In two-phase flow, increasing coolant inlet temperature results in more nucleation sites and improved thermal performance consequently. Thermal resistance drops with flow rate in single-phase flow while it is not affected by flow rate in nucleate boiling region. An improvement in the design of the cold plate was carried out, with the goal of increasing the number of bubble sites and flow velocity at the root fins, by cutting the original fins and creating channels perpendicular to the original channels. Three design parameters, fin height, width of machined channels, and height of short fins preserved through machined channels, were defined. It was observed that widening the machined channels and cutting fins to some point can improve the thermal performance of the cold plate. However, removing fins excessively adversely affects the thermal performance of the cold plate because of loss of heat transfer surface area. Moreover, preserving the short fins through the machined channels decreases thermal resistance as they increase heat transfer surface area and nucleation sites. Furthermore, a deep learning-based compact model is demonstrated for the two-phase cold plate design in the specific range of geometry and flow conditions. The developed compact model is utilized to drive the single and multi-objective optimization to arrive at global optimal results.
more »
« less
Design and Thermal Analysis of a 3D Printed Impingement Pin Fin Cold Plate for Heterogeneous Integration Application
Miniaturization and high heat flux of power electronic devices have posed a colossal challenge for adequate thermal management. Conventional air-cooling solutions are inadequate for high-performance electronics. Liquid cooling is an alternative solution thanks to the higher specific heat and latent heat associated with the coolants. Liquid-cooled cold plates are typically manufactured by different approaches such as: skived, forged, extrusion, electrical discharge machining. When researchers are facing challenges at creating complex geometries in small spaces, 3D-printing can be a solution. In this paper, a 3D-printed cold plate was designed and characterized with water coolant. The printed metal fin structures were strong enough to undergo pressure from the fluid flow even at high flow rates and small fin structures. A copper block with top surface area of 1 inch by 1 inch was used to mimic a computer chip. Experimental data has good match with a simulation model which was built using commercial software 6SigmaET. Effects of geometry parameters and operating parameters were investigated. Fin diameter was varied from 0.3 mm to 0.5 mm and fin height was maintained at 2 mm. A special manifold was designed to maximize the surface contact area between coolant and metal surface and therefore minimize thermal resistance. The flow rate was varied from 0.75 L/min to 2 L/min and coolant inlet temperature was varied from 25 to 48 oC. It was observed that for the coolant inlet temperature 25 oC and aluminum cold plate, the junction temperature was kept below 63.2 oC at input power 350 W and pressure drop did not exceed 23 Kpa. Effects of metal materials used in 3D-printing on the thermal performance of the cold plate were also studied in detail.
more »
« less
- Award ID(s):
- 1738793
- PAR ID:
- 10338738
- Date Published:
- Journal Name:
- IEEE Transactions on Components, Packaging and Manufacturing Technology
- ISSN:
- 2156-3950
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to their lower pressure drop, impinging cold-plates are preferred over parallel flow cold-plates when there is no strict space limitation (i.e. when flow can enter perpendicular to the electronic board). Splitting the flow into two branches cuts the flow rate and path in half, which leads to lower pressure drop through the channels. A groove is used to direct the flow exiting the diffuser into the channels. The number of the geometric design parameters of the cold-plate will vary depending on the shape of the groove. In this research, the response surface method (RSM) was used to optimization the fin geometry of an impinging cold-plate with a trapezoidal cross section groove. The cold plate is used for warm water cooling of electronics. Three fin parameters (thickness, height, and gap) and three groove parameters were optimized to reach minimum values for hydraulic and thermal resistances at fixed values of coolant inlet temperature, coolant flow rate, and electronic chip power.more » « less
-
Due to their lower pressure drop, impinging cold-plates are preferred over parallel flow cold-plates when there is no strict space limitation (i.e. when flow can enter perpendicular to the electronic board). Splitting the flow into two branches cuts the flow rate and path in half, which leads to lower pressure drop through the channels. A groove is used to direct the flow exiting the diffuser into the channels. The number of the geometric design parameters of the cold-plate will vary depending on the shape of the groove. In this research, the response surface method (RSM) was used to optimization the fin geometry of an impinging cold-plate with a trapezoidal cross section groove. The cold plate is used for warm water cooling of electronics. Three fin parameters (thickness, height, and gap) and three groove parameters were optimized to reach minimum values for hydraulic and thermal resistances at fixed values of coolant inlet temperature, coolant flow rate, and electronic chip power.more » « less
-
Miniaturization of microelectronic components comes at a price of high heat flux density. By adopting liquid cooling, the rising demand of high heat flux devices can be met while the reliability of the microelectronic devices can also be improved to a greater extent. Liquid cooled cold plates are largely replacing air based heat sinks for electronics in data center applications, thanks to its large heat carrying capacity. A bench level study was carried out to characterize the thermohydraulic performance of two microchannel cold plates which uses warm DI water for cooling Multi Chip Server Modules (MCM). A laboratory built mock package housing mock dies and a heat spreader was employed while assessing the thermal performance of two different cold plate designs at varying coolant flow rate and temperature. The case temperature measured at the heat spreader for varying flow rates and input power were essential in identifying the convective resistance. The flow performance was evaluated by measuring the pressure drop across cold plate module at varying flow rates. Cold plate with the enhanced microchannel design yielded better results compared to a traditional parallel microchannel design. The study conducted at higher coolant temperatures yielded lower pressure drop values with no apparent change in the thermal behavior using different cold plates. The tests conducted after reversing the flow direction in microchannels provide an insight at the effect of neighboring dies on each other and reveal the importance of package specific cold plate designs for top performance. The experimental results were validated using a numerical model which are further optimized for improved geometric designs.more » « less
-
Abstract Due to the increasing computational demand driven by artificial intelligence, machine learning, and the Internet of Things (IoT), there has been an unprecedented growth in transistor density for high-end CPUs and GPUs. This growth has resulted in high thermal dissipation power (TDP) and high heat flux, necessitating the adoption of advanced cooling technologies to minimize thermal resistance and optimize cooling efficiency. Among these technologies, direct-to-chip cold plate-based liquid cooling has emerged as a preferred choice in electronics cooling due to its efficiency and cost-effectiveness. In this context, different types of single-phase liquid coolants, such as propylene glycol (PG), ethylene glycol (EG), DI water, treated water, and nanofluids, have been utilized in the market. These coolants, manufactured by different companies, incorporate various inhibitors and chemicals to enhance long-term performance, prevent biogrowth, and provide corrosion resistance. However, the additives used in these coolants can impact their thermal performance, even when the base coolant is the same. This paper aims to compare these coolant types and evaluate the performance of the same coolant from different vendors. The selection of coolants in this study is based on their performance, compatibility with wetted materials, reliability during extended operation, and environmental impact, following the guidelines set by ASHRAE. To conduct the experiments, a single cold plate-based benchtop setup was constructed, utilizing a thermal test vehicle (TTV), pump, reservoir, flow sensor, pressure sensors, thermocouple, data acquisition units, and heat exchanger. Each coolant was tested using a dedicated cold plate, and thorough cleaning procedures were carried out before each experiment. The experiments were conducted under consistent boundary conditions, with a TTV power of 1000 watts and varying coolant flow rates (ranging from 0.5 lpm to 2 lpm) and supply coolant temperatures (17°C, 25°C, 35°C, and 45°C), simulating warm water cooling. The thermal resistance (Rth) versus flow rate and pressure drop (ΔP) versus flow rate graphs were obtained for each coolant, and the impact of different supply coolant temperatures on pressure drop was characterized. The data collected from this study will be utilized to calculate the Total Cost of Ownership (TCO) in future research, providing insights into the impact of coolant selection at the data center level. There is limited research available on the reliability used in direct-to-chip liquid cooling, and there is currently no standardized methodology for testing their reliability. This study aims to fill this gap by focusing on the reliability of coolants, specifically propylene glycols at concentrations of 25%. To analyze the effectiveness of corrosion inhibitors in these coolants, ASTM standard D1384 apparatus, typically used for testing engine coolant corrosion inhibitors on metal samples in controlled laboratory settings, was employed. The setup involved immersing samples of wetted materials (copper, solder coated brass, brass, steel, cast iron, and cast aluminum) in separate jars containing inhibited propylene glycol solutions from different vendors. This test will determine the reliability difference between the same inhibited solutions from different vendors.more » « less