skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent Advances in Supramolecular Affinity Separations: Affinity Chromatography and Related Methods
Affinity chromatography is a technique that uses a stationary phase based on the supramolecular interactions that occur in biological systems or mimics of these systems. This method has long been a popular tool for the isolation, measurement, and characterization of specific targets in complex samples. This review discusses the basic concepts of this method and examines recent developments in affinity chromatography and related supramolecular separation methods. Topics that are examined include advances that have occurred in the types of supports, approaches to immobilization, and binding agents that are employed in this method. New developments in the applications of affinity chromatography are also summarized, including an overview on the use of this method for biochemical purification, sample preparation or analysis, chiral separations, and biointeraction studies.  more » « less
Award ID(s):
2108881
PAR ID:
10338771
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Grinberg, Nelu; Carr, Peter W.
Date Published:
Journal Name:
Advances in chromatography
Volume:
58
ISSN:
0065-2415
Page Range / eLocation ID:
1-73
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology. 
    more » « less
  2. Abstract The protein–ligand binding affinity quantifies the binding strength between a protein and its ligand. Computer modeling and simulations can be used to estimate the binding affinity or binding free energy using data- or physics-driven methods or a combination thereof. Here we discuss a purely physics-based sampling approach based on biased molecular dynamics simulations. Our proposed method generalizes and simplifies previously suggested stratification strategies that use umbrella sampling or other enhanced sampling simulations with additional collective-variable-based restraints. The approach presented here uses a flexible scheme that can be easily tailored for any system of interest. We estimate the binding affinity of human fibroblast growth factor 1 to heparin hexasaccharide based on the available crystal structure of the complex as the initial model and four different variations of the proposed method to compare against the experimentally determined binding affinity obtained from isothermal titration calorimetry experiments. 
    more » « less
  3. Modern operating systems allow task migrations to be restricted by specifying per-task processor affinity masks. Such a mask specifies the set of processor cores upon which a task can be scheduled. In this paper, a semi-partitioned scheduler, AM-Red (affinity mask reduction), is presented for scheduling implicit-deadline sporadic tasks with arbitrary affinity masks on an identical multiprocessor. AM-Red is obtained by applying an affinity-mask-reduction method that produces affinities in accordance with those specified, without compromising feasibility, but with only a linear number of migrating tasks. It functions by employing a tunable frame of size |F|. For any choice of |F|, AM-Red is soft-real-time optimal, with tardiness bounded by |F|, but the frequency of task migrations is proportional to |F|. If |F| divides all task periods, then AM-Red is also hard-real-time-optimal (tardiness is zero). AM-Red is the first optimal scheduler proposed for arbitrary affinity masks without future knowledge of all job releases. Experiments are presented that show that AM-Red is implementable with low overhead and yields reasonable tardiness and task-migration frequency. 
    more » « less
  4. Abstract In this paper, we address the problem of estimating transport surplus (a.k.a. matching affinity) in high-dimensional optimal transport problems. Classical optimal transport theory specifies the matching affinity and determines the optimal joint distribution. In contrast, we study the inverse problem of estimating matching affinity based on the observation of the joint distribution, using an entropic regularization of the problem. To accommodate high dimensionality of the data, we propose a novel method that incorporates a nuclear norm regularization that effectively enforces a rank constraint on the affinity matrix. The low-rank matrix estimated in this way reveals the main factors that are relevant for matching. 
    more » « less
  5. A supramolecular dye-capture system comprising anionic amidosquaraine guest and macrocyclic tetralactam host exhibits nanomolar affinity and “turn on” visible fluorescence. Utility is demonstrated with a new fluorescent assay for liposome leakage induced by the biomedically important enzyme phospholipase A 2 . 
    more » « less