skip to main content


Title: A Demographic Analysis on Prerequisite Preparation in an Advanced Data Structures Course
Previous work in computing has shown that Black, Latinx, Native American and Pacific islander (BLNPI), women, first-generation, and transfer students tend to have worse outcomes during their time in university compared to their majority counterparts. Previous work has also found that students' incoming prerequisite course proficiency is positively correlated with their outcomes in a course. In this work, we investigate the role that prerequisite course proficiency has on outcomes between these groups of students. Specifically, we examine incoming prerequisite course proficiency in an Advanced Data Structures course. When comparing incoming prerequisite course proficiency between demographic pairs, we only see small differences for gender or by first-generation status. There is a sizeable difference by BLNPI status, although this difference is not statistically significant, possibly due to the small number of BLNPI students. In addition, we find that transfer students have sizeable and statistically significantly lower prerequisite course proficiency when compared to non-transfer students. For BLNPI and transfer students, we find that they also have lower grades in the prerequisite courses, which may partially explain their lower prerequisite course proficiency. These findings suggest that institutions need to find ways to better serve BLNPI and transfer students.  more » « less
Award ID(s):
2121592 2121596
NSF-PAR ID:
10338955
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
Volume:
1
Page Range / eLocation ID:
661 to 667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2016, Michigan State University developed a new model of classroom education and assessment in their Mechanics of Materials course. This model used a modified mastery approach that stresses formative assessment, guidance in the problem-solving process, and structured student reflection. We now refer to this new approach as SMART Assessment - short for Supported Mastery Assessment using Repeated Testing. The effects of this model have been very positive, and results on overall student success in Mechanics of Materials have been presented in full at prior ASEE conferences. In this paper, we focus on the effects of this new assessment model on the performance of students who may be at greater risk due to their first-generation status or economic disadvantage, while accounting for other measures such as incoming GPA and performance in the prerequisite course, Statics. The evaluation was conducted across 3.5 academic years and involved 1275 students divided among 9 experimental sections and 6 control sections. Statistical analysis indicated that there were no significant differences between the performance indices for students in the SMART sections based on their parents’ history of university education or their eligibility to receive a Pell Grant. While students in the Traditional section tended to have higher grades in ME222, this cannot be compared directly to the grades in the SMART section due to the difference in grading framework. Previous work, however, has indicated that students who complete the SMART framed sections have a deeper understanding of the course material, as demonstrated by their improved performance on common final exam problems that were evaluated with a mastery-focused rubric. 
    more » « less
  2. Parks, Samantha T. (Ed.)
    ABSTRACT Diversifying the STEM workforce is a national priority, yet white males continue to dominate the ranks of professional scientists and engineers in the United States. This is partly due to disparities in academic success for women and minoritized students in prerequisite introductory STEM courses, leading to higher attrition from B.S. degree programs. Past research has demonstrated that when social-psychological interventions targeting “stereotype threat” or “fixed” mindsets are implemented in STEM courses, equity gaps may be significantly reduced. We incorporated two such interventions into introductory biology courses for life science B.S. majors and Associate’s degree allied health students taught at a regional research university and a community college. We observed no significant effects of the values-affirmation interventions on grade outcomes for students in any of the courses, regardless of students' gender identity, race/ethnicity, or first-generation status, suggesting that students, on average, were not experiencing stereotype threat on either campus. We found a significant positive association between completing more weekly reflective journal entries and higher mean content-based grades for students in the university majors course overall, especially first-generation students, although the association was significantly negative for women. Our results confirm that context matters when implementing interventions aimed at reducing achievement gaps, and we propose that educators assess their students’ social-psychological characteristics and then select interventions accordingly. 
    more » « less
  3. This research paper investigates the relationship between race/ ethnicity, gender, first-generation college student status, and engineering identity using cross-sectional data from early-career engineering majors. Measures of engineering identity are increasingly used in models of engineering education to evaluate how identity contributes to success and persistence of engineering students. Engineering identity is generally assumed to contribute to educational success, with stronger engineering identity leading to persistence. At the same time, data clearly shows that persistence of engineering students varies by race/ethnicity and gender. Given these previous findings, we would expect to find that engineering identity will vary by race/ ethnicity, gender, and first generation status. Yet, relatively little work has quantitatively compared how engineering identity differs across racial/ ethnic groups and gender. While researchers are increasingly trying to gain a better understanding of engineering identity among Latina students, for example, the literature has not yet adequately accounted for how Latina students differ from their non-Hispanic white peers. This works seeks to address that gap in the literature with an exploration of the ways that race/ethnicity, gender, and first generation status work together to impact engineering identity among early-career engineering students at four public Hispanic-Serving Institutions (HSIs) in the Southwestern United States. We conducted surveys as part of a longitudinal study on STEM education. Data discussed here comes from baseline surveys of three cohorts of engineering students (N=475). Approximately two-thirds of the respondents were attending a traditional 4-year university while the remainder (N=159) were attending community college at the time of the survey. Approximately two-thirds of the respondents identified as Latinx, 27% identified as female, and 26.5% reported that they were first-generation college students. While expectations were that engineering identity would vary by race/ethnicity and gender, preliminary analyses of our data unexpectedly reveal no significant differences between Latinx and White students in terms of their engineering identity and no significant differences in engineering identity between male and female students. Interactions between race/ethnicity and gender were also tested and yielded no significant differences between early-career Latinx and White students in terms of their engineering identity. Finally, students who reported that they will be the first in their family to get a college degree had significantly lower engineering identity scores (=-.422; p=.001). These results lead us to conclude that first generation status at HSIs may be more important than gender and race/ ethnicity in the development of engineering identity for early career students. 
    more » « less
  4. High-impact academic experiences, particularly research and internship experiences, have positive impacts for engineering students on engineering task self-efficacy (ETSE), a measure of students’ perception of their ability to perform technical engineering tasks. However, under- represented racial/ethnic minority students (URM) and women in engineering are found to have relatively lower self-perceptions across several academic and professional self-efficacy measures. Previous studies examined the impact of research and internship experiences on ETSE for students categorized by gender and URM status separately. The current study explores the impact of these experiences on ETSE for the intersection between these two identity categories. This study found that both non-URM and URM women that participated in research and internship experiences had lower ETSE scores than non-URM and URM men, respectively. However, URM women that participated in both research and internship experiences had a statistically similar ETSE score to non-URM men that had not participated in either. This study uses multiple linear regression to measure the association between engineering internships and student’s reported ETSE (effects of participating in research were not found to be significant across identities). Preliminary findings indicate that differences in ETSE between internship participants and non-participants are highest for URM women when compared to their counterparts. Consistent with the literature, this research finds that there is a greater positive effect in ETSE scores, as a result of participation in both research and internship experiences, for URM women than their majority counterparts. These preliminary results provide a foundation for further studies to causally investigate the link between academic experiences and self-efficacy levels for students who are underrepresented in engineering programs. Future implications of this work include the creation of targeted intervention efforts to increase support for all URM students’ access and participation in research and internship experiences. Additionally, this work seeks to challenge the bias towards monolithic interpretations of women and URM engineering students as separate categories and encourage intersectional perspectives when analyzing data to produce more inclusive results. Key Concepts: intersectionality, self-efficacy, engineering task self-efficacy, learning outcomes, academic pathways, inclusion, engineering experiences, research, internships 
    more » « less
  5. Abstract Background

    Large introductory lecture courses are frequently post-secondary students’ first formal interaction with science, technology, engineering, and mathematics (STEM) disciplines. Grade outcomes in these courses are often disparate across student populations, which, in turn, has implications for student retention. This study positions such disparities as a manifestation of systemic inequities along the dimensions of sex, race/ethnicity, income, and first-generation status and investigates the extent to which they are similar across peer institutions.

    Results

    We examined grade outcomes in a selected set of early STEM courses across six large, public, research-intensive universities in the United States over ten years. In this sample of more than 200,000 STEM course enrollments, we find that course grade benefits increase significantly with the number of systemic advantages students possess at all six institutions. The observed trends in academic outcomes versus advantage are strikingly similar across universities despite the fact that we did not control for differences in grading practices, contexts, and instructor and student populations. The findings are concerning given that these courses are often students’ first post-secondary STEM experiences.

    Conclusions

    STEM course grades are typically lower than those in other disciplines; students taking them often pay grade penalties. The systemic advantages some student groups experience are correlated with significant reductions in these grade penalties at all six institutions. The consistency of these findings across institutions and courses supports the claim that inequities in STEM education are a systemic problem, driven by factors that go beyond specific courses or individual institutions. Our work provides a basis for the exploration of contexts where inequities are exacerbated or reduced and can be used to advocate for structural change within STEM education. To cultivate more equitable learning environments, we must reckon with how pervasive structural barriers in STEM courses negatively shape the experiences of marginalized students.

     
    more » « less