skip to main content

Title: A Demographic Analysis on Prerequisite Preparation in an Advanced Data Structures Course
Previous work in computing has shown that Black, Latinx, Native American and Pacific islander (BLNPI), women, first-generation, and transfer students tend to have worse outcomes during their time in university compared to their majority counterparts. Previous work has also found that students' incoming prerequisite course proficiency is positively correlated with their outcomes in a course. In this work, we investigate the role that prerequisite course proficiency has on outcomes between these groups of students. Specifically, we examine incoming prerequisite course proficiency in an Advanced Data Structures course. When comparing incoming prerequisite course proficiency between demographic pairs, we only see small differences for gender or by first-generation status. There is a sizeable difference by BLNPI status, although this difference is not statistically significant, possibly due to the small number of BLNPI students. In addition, we find that transfer students have sizeable and statistically significantly lower prerequisite course proficiency when compared to non-transfer students. For BLNPI and transfer students, we find that they also have lower grades in the prerequisite courses, which may partially explain their lower prerequisite course proficiency. These findings suggest that institutions need to find ways to better serve BLNPI and transfer students.
Authors:
; ; ;
Award ID(s):
2121592
Publication Date:
NSF-PAR ID:
10338955
Journal Name:
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
Volume:
1
Page Range or eLocation-ID:
661 to 667
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2016, Michigan State University developed a new model of classroom education and assessment in their Mechanics of Materials course. This model used a modified mastery approach that stresses formative assessment, guidance in the problem-solving process, and structured student reflection. We now refer to this new approach as SMART Assessment - short for Supported Mastery Assessment using Repeated Testing. The effects of this model have been very positive, and results on overall student success in Mechanics of Materials have been presented in full at prior ASEE conferences. In this paper, we focus on the effects of this new assessment model on the performance of students who may be at greater risk due to their first-generation status or economic disadvantage, while accounting for other measures such as incoming GPA and performance in the prerequisite course, Statics. The evaluation was conducted across 3.5 academic years and involved 1275 students divided among 9 experimental sections and 6 control sections. Statistical analysis indicated that there were no significant differences between the performance indices for students in the SMART sections based on their parents’ history of university education or their eligibility to receive a Pell Grant. While students in the Traditional section tended to havemore »higher grades in ME222, this cannot be compared directly to the grades in the SMART section due to the difference in grading framework. Previous work, however, has indicated that students who complete the SMART framed sections have a deeper understanding of the course material, as demonstrated by their improved performance on common final exam problems that were evaluated with a mastery-focused rubric.« less
  2. This research paper investigates the relationship between race/ ethnicity, gender, first-generation college student status, and engineering identity using cross-sectional data from early-career engineering majors. Measures of engineering identity are increasingly used in models of engineering education to evaluate how identity contributes to success and persistence of engineering students. Engineering identity is generally assumed to contribute to educational success, with stronger engineering identity leading to persistence. At the same time, data clearly shows that persistence of engineering students varies by race/ethnicity and gender. Given these previous findings, we would expect to find that engineering identity will vary by race/ ethnicity, gender, and first generation status. Yet, relatively little work has quantitatively compared how engineering identity differs across racial/ ethnic groups and gender. While researchers are increasingly trying to gain a better understanding of engineering identity among Latina students, for example, the literature has not yet adequately accounted for how Latina students differ from their non-Hispanic white peers. This works seeks to address that gap in the literature with an exploration of the ways that race/ethnicity, gender, and first generation status work together to impact engineering identity among early-career engineering students at four public Hispanic-Serving Institutions (HSIs) in the Southwestern United States.more »We conducted surveys as part of a longitudinal study on STEM education. Data discussed here comes from baseline surveys of three cohorts of engineering students (N=475). Approximately two-thirds of the respondents were attending a traditional 4-year university while the remainder (N=159) were attending community college at the time of the survey. Approximately two-thirds of the respondents identified as Latinx, 27% identified as female, and 26.5% reported that they were first-generation college students. While expectations were that engineering identity would vary by race/ethnicity and gender, preliminary analyses of our data unexpectedly reveal no significant differences between Latinx and White students in terms of their engineering identity and no significant differences in engineering identity between male and female students. Interactions between race/ethnicity and gender were also tested and yielded no significant differences between early-career Latinx and White students in terms of their engineering identity. Finally, students who reported that they will be the first in their family to get a college degree had significantly lower engineering identity scores (=-.422; p=.001). These results lead us to conclude that first generation status at HSIs may be more important than gender and race/ ethnicity in the development of engineering identity for early career students.« less
  3. High-impact academic experiences, particularly research and internship experiences, have positive impacts for engineering students on engineering task self-efficacy (ETSE), a measure of students’ perception of their ability to perform technical engineering tasks. However, under- represented racial/ethnic minority students (URM) and women in engineering are found to have relatively lower self-perceptions across several academic and professional self-efficacy measures. Previous studies examined the impact of research and internship experiences on ETSE for students categorized by gender and URM status separately. The current study explores the impact of these experiences on ETSE for the intersection between these two identity categories. This study found that both non-URM and URM women that participated in research and internship experiences had lower ETSE scores than non-URM and URM men, respectively. However, URM women that participated in both research and internship experiences had a statistically similar ETSE score to non-URM men that had not participated in either. This study uses multiple linear regression to measure the association between engineering internships and student’s reported ETSE (effects of participating in research were not found to be significant across identities). Preliminary findings indicate that differences in ETSE between internship participants and non-participants are highest for URM women when compared to theirmore »counterparts. Consistent with the literature, this research finds that there is a greater positive effect in ETSE scores, as a result of participation in both research and internship experiences, for URM women than their majority counterparts. These preliminary results provide a foundation for further studies to causally investigate the link between academic experiences and self-efficacy levels for students who are underrepresented in engineering programs. Future implications of this work include the creation of targeted intervention efforts to increase support for all URM students’ access and participation in research and internship experiences. Additionally, this work seeks to challenge the bias towards monolithic interpretations of women and URM engineering students as separate categories and encourage intersectional perspectives when analyzing data to produce more inclusive results. Key Concepts: intersectionality, self-efficacy, engineering task self-efficacy, learning outcomes, academic pathways, inclusion, engineering experiences, research, internships« less
  4. Teaming is a core part of engineering education, especially in the first and last years of engineering when project work is a prevalent focus. The literature on the effects of working in diverse teams is mixed. Negative findings include decreased affect, increased frustration, and sustained conflict in teams. Positive findings include increased productivity, production of high quality products, and divergent-thinking and idea generation. Given these mixed findings, it becomes important to not only understand the practical outputs of working in diverse teams, but also how the experience of working in diverse teams influences whether students see themselves as engineers and whether or not they feel they belong in engineering. Our project, Building Supports for Diversity through Engineering Teams, investigates how students’ attitudes towards diversity influence how students experience work in diverse teams through addressing two main research questions: 1) What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? 2) How do students’ perceptions of diversity, affect, and engineering practices change because of working on diverse teams? Using a multi-method approach, we deployed survey instruments to determine changes in student’s attitudes about teaming, diversity sensitivity, and openness attitudes. We alsomore »observed students working in teams and interviewed these students about their perceptions of diversity and experiences in their teams. Preliminary results of the quantitative phase show that variance in students’ attitudes about diversity significantly increase over the semester, further reflecting the mixed results that have been seen previously in the literature. Additionally, Social Network Analysis was used to characterize the social structure practices of a multi-section, large-enrollment first-year engineering course. This reveals the underlying social structure of the environment, its inclusiveness, and how diverse students work with others on engineering. Initial results indicate that students are included in social networks regardless of gender and race. Preliminary results of the qualitative phase, using Interpretive Phenomenological Analysis, have yielded relationships between student’s definitions, valuation, and enactment of diversity in engineering spaces. Individual student’s incoming attitudes of diversity and previous experiences interact with practical needs in first-year engineering classrooms to create different microclimates within each team. These microclimates depict tensions between what instructors emphasize about diversity, stereotypes of engineering as focused on technical instead of social skills, and pragmatic forces of “getting the job done.” This knowledge can help explain some of the complexity behind the conflicting literature on diversity in teams. Ultimately, this research can help us understand how to build inclusive and diverse environments that guide students to learn how to understand their own complex relationship, understanding, and enactment of diversity in engineering. By understanding how students make sense of diversity in engineering spaces, educators and researchers can figure out how to introduce these concepts in relevant ways so that students can inclusively meet the grand challenges in engineering. This curriculum integration, in turn, can improve team interactions and the climate of engineering for underrepresented groups.« less
  5. A combination of strategies was implemented to reduce barriers to transfer from associate to baccalaureate programs, and baccalaureate degree completion. These strategies include creation of the STEM Transfer Collaborative (STC). an adaption of the CUNY Pathways articulation initiative. Components of the STC include articulation agreements, shared professional development to align pedagogy and curriculum, outreach and collaboration by both the sending and receiving college faculty to begin transfer preparation and support before transfer occurs, and regular updates to community college faculty on the success of their transfer students. The second strategy employed is Momentum to the Baccalaureate (MB), an adaption of the CUNY Accelerated Study in Associate Programs (ASAP). MB provides support for junior and senior-level transfer students who are either community colleges associate degree graduates (external transfer) or associate degree graduates who transferred to bachelor’s programs at the same comprehensive college they earned their associate degree at, which has a 2+2 degree structure (internal transfer). Components of MB include personalized mentoring, advisement, and monthly stipends to students who maintain full-time enrollment and good academic standing. Participating majors include computer engineering technology, computer systems technology, construction management and civil engineering technology, electrical engineering technology, and applied chemistry. Propensity matching was usedmore »to evaluate the effectiveness of these strategies. Participating campuses are part of the City University of New York (CUNY), and include six community colleges (Borough of Manhattan Community College, Bronx Community College, Guttman Community College, Hostos Community College, Kingsborough Community College, and LaGuardia Community College), five of which are Hispanic Serving Institutions (HSIs), and New York City College of Technology (City Tech), also an HSI, which offers associate and bachelor’s programs (2+2 structure). Our first cohort of 40 students started upper-level studies in fall 2019, and has completed 2 years (four semesters) of post-associate degree study. The second cohort of 40 students, started in fall 2020, and has completed one year (two semesters) of post-associate degree study. Cohort 1 students receiving MB, supports had a significantly higher graduation rate after two years than the college average. Additionally, for cohort 1, the STC seems to have reduced “transfer shock,” the typical drop in GPA the first semester after transfer. There was no statistical difference in GPA, credits completed and semester-to-semester persistence of internal and external transfers in the MB program. Cohort 1 external transfer students who received support though MB also had a statistically significant improvement in their semester GPAs for their first 3 semesters at City Tech compared to matched students who were not provided support in the junior and senior years. There was no statistically significant difference by the 4th semester. Cohort 2 internal transfers receiving MB supports in their junior year had a statistically significant improvement in credits earned and persistence compared to a matched cohort without MB supports. There was no statistically significant improvement of external transfers compared to a matched cohort, who did not receive MB supports The inability of external transfer students to come to campus due to the pandemic, may have negated the sense of community and belonging that MB was intended to create. Overall, these preliminary results suggest that targeted pre-transfer and post-transfer supports improve transfer student outcomes. This project (NSF grant #1832457) was funded through the NSF Division of Education, Improving Undergraduate STEM Education: Hispanic-Serving Institutions Program.« less