A bstract The Distance Conjecture holds that any infinite-distance limit in the scalar field moduli space of a consistent theory of quantum gravity must be accompanied by a tower of light particles whose masses scale exponentially with proper field distance ‖ ϕ ‖ as m ~ exp(− λ ‖ ϕ ‖), where λ is order-one in Planck units. While the evidence for this conjecture is formidable, there is at present no consensus on which values of λ are allowed. In this paper, we propose a sharp lower bound for the lightest tower in a given infinite-distance limit in d dimensions: λ ≥ $$ 1/\sqrt{d-2} $$ 1 / d − 2 . In support of this proposal, we show that (1) it is exactly preserved under dimensional reduction, (2) it is saturated in many examples of string/M-theory compactifications, including maximal supergravity in d = 4 – 10 dimensions, and (3) it is saturated in many examples of minimal supergravity in d = 4 – 10 dimensions, assuming appropriate versions of the Weak Gravity Conjecture. We argue that towers with λ < $$ 1/\sqrt{d-2} $$ 1 / d − 2 discussed previously in the literature are always accompanied by even lighter towers with λ ≥ $$ 1/\sqrt{d-2} $$ 1 / d − 2 , thereby satisfying our proposed bound. We discuss connections with and implications for the Emergent String Conjecture, the Scalar Weak Gravity Conjecture, the Repulsive Force Conjecture, large-field inflation, and scalar field potentials in quantum gravity. In particular, we argue that if our proposed bound applies beyond massless moduli spaces to scalar fields with potentials, then accelerated cosmological expansion cannot occur in asymptotic regimes of scalar field space in quantum gravity.
more »
« less
A Note on S.Weinberg, "Massless Particles in Higher Dimensions"
In [1], Weinberg made a conjecture about the little-group representations of massless particles that can be created out of the vacuum by the action of a local operator in d dimensions, generalizing his old result [2] in d = 4. In this note, I prove his conjecture and extend it to arbitrary irreps of so(1, d − 1).
more »
« less
- Award ID(s):
- 1914679
- PAR ID:
- 10339042
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We use branes to generalize the Distance Conjecture. We conjecture that in any infinite-distance limit in the moduli space of a d-dimensional quantum gravity theory, among the set of particle towers and fundamental branes with at most pmax spacetime dimensions (where pmax is an integer between 1 and d-2), at least one has mass/tension decreasing exponentially T ~ exp(–α ∆) with the moduli space distance ∆ at a rate of at least α ≥ 1/sqrt(d-pmax-1). Since pmax can vary, this represents multiple conditions, where the Sharpened Distance Conjecture is the pmax = 1 case. This conjecture is a necessary condition imposed on higher-dimensional theories in order for the Sharpened Distance Conjecture to hold in lower-dimensional theories. We test our conjecture in theories with maximal and half-maximal supersymmetry in diverse dimensions, finding that it is satisfied and often saturated. In some cases where it is saturated — most notably, heterotic string theory in 10 dimensions — we argue that novel, low-tension non-supersymmetric branes must exist. We also identify patterns relating the rates at which various brane tensions vary in infinite-distance limits and relate these tensions to the species scale.more » « less
-
We study the log-rank conjecture from the perspective of point-hyperplane incidence geometry. We formulate the following conjecture: Given a point set in ℝ d that is covered by constant-sized sets of parallel hyperplanes, there exists an affine subspace that accounts for a large (i.e., 2 –polylog( d ) ) fraction of the incidences, in the sense of containing a large fraction of the points and being contained in a large fraction of the hyperplanes. In other words, the point-hyperplane incidence graph for such configurations has a large complete bipartite subgraph. Alternatively, our conjecture may be interpreted linear-algebraically as follows: Any rank- d matrix containing at most O (1) distinct entries in each column contains a submatrix of fractional size 2 –polylog( d ) , in which each column is constant. We prove that our conjecture is equivalent to the log-rank conjecture; the crucial ingredient of this proof is a reduction from bounds for parallel k -partitions to bounds for parallel ( k -1)-partitions. We also introduce an (apparent) strengthening of the conjecture, which relaxes the requirements that the sets of hyperplanes be parallel. Motivated by the connections above, we revisit well-studied questions in point-hyperplane incidence geometry without structural assumptions (i.e., the existence of partitions). We give an elementary argument for the existence of complete bipartite subgraphs of density Ω (ε 2 d / d ) in any d -dimensional configuration with incidence density ε, qualitatively matching previous results proved using sophisticated geometric techniques. We also improve an upper-bound construction of Apfelbaum and Sharir [ 2 ], yielding a configuration whose complete bipartite subgraphs are exponentially small and whose incidence density is Ω (1/√ d ). Finally, we discuss various constructions (due to others) of products of Boolean matrices which yield configurations with incidence density Ω (1) and complete bipartite subgraph density 2 -Ω (√ d ) , and pose several questions for this special case in the alternative language of extremal set combinatorics. Our framework and results may help shed light on the difficulty of improving Lovett’s Õ(√ rank( f )) bound [ 20 ] for the log-rank conjecture. In particular, any improvement on this bound would imply the first complete bipartite subgraph size bounds for parallel 3-partitioned configurations which beat our generic bounds for unstructured configurations.more » « less
-
The degenerate Heisenberg category Heis_k is a strict monoidal category which was originally introduced in the special case k=-1 by Khovanov in 2010. Khovanov conjectured that the Grothendieck ring of the additive Karoubi envelope of his category is isomorphic to a certain \Z-form for the universal enveloping algebra of the infinite-dimensional Heisenberg Lie algebra specialized at central charge -1. We prove this conjecture and extend it to arbitrary central charge k. We also explain how to categorify the comultiplication (generically).more » « less
-
Andrew Ogg’s mathematical viewpoint has inspired an increasingly broad array of results and conjectures. His results and conjectures have earmarked fruitful turning points in our subject, and his influence has been such a gift to all of us. Ogg’s celebrated torsion conjecture—as it relates to modular curves—can be paraphrased as saying that rational points (on the modular curves that parametrize torsion points on elliptic curves) exist if and only if there is a good geometric reason for them to exist. We give a survey of Ogg’s torsion conjecture and the subsequent developments in our understanding of rational points on modular curves over the last fifty years.more » « less
An official website of the United States government

