skip to main content


Title: Synthetic Approaches to Complex Organic Molecules in the Cold Interstellar Medium
The observation and synthesis of organic molecules in interstellar space is one of the most exciting and rapidly growing topics in astrochemistry. Spectroscopic observations especially with millimeter and submillimeter waves have resulted in the detection of more than 250 molecules in the interstellar clouds from which stars and planets are ultimately formed. In this review, we focus on the diverse suggestions made to explain the formation of Complex Organic Molecules (COMs) in the low-temperature interstellar medium. The dominant mechanisms at such low temperatures are still a matter of dispute, with both gas-phase and granular processes, occurring on and in ice mantles, thought to play a role. Granular mechanisms include both diffusive and nondiffusive processes. A granular explanation is strengthened by experiments at 10 K that indicate that the synthesis of large molecules on granular ice mantles under space-like conditions is exceedingly efficient, with and without external radiation. In addition, the bombardment of carbon-containing ice mantles in the laboratory by cosmic rays, which are mainly high-energy protons, can lead to organic species even at low temperatures. For processes on dust grains to be competitive at low temperatures, however, non-thermal desorption mechanisms must be invoked to explain why the organic molecules are detected in the gas phase. Although much remains to be learned, a better understanding of low-temperature organic syntheses in space will add both to our understanding of unusual chemical processes and the role of molecules in stellar evolution.  more » « less
Award ID(s):
1906489
NSF-PAR ID:
10339100
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
8
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A new, more comprehensive model of gas–grain chemistry in hot molecular cores is presented, in which nondiffusive reaction processes on dust-grain surfaces and in ice mantles are implemented alongside traditional diffusive surface/bulk-ice chemistry. We build on our nondiffusive treatments used for chemistry in cold sources, adopting a standard collapse/warm-up physical model for hot cores. A number of other new chemical model inputs and treatments are also explored in depth, culminating in a final model that demonstrates excellent agreement with gas-phase observational abundances for many molecules, including some (e.g., methoxymethanol) that could not be reproduced by conventional diffusive mechanisms. The observed ratios of structural isomers methyl formate, glycolaldehyde, and acetic acid are well reproduced by the models. The main temperature regimes in which various complex organic molecules (COMs) are formed are identified. Nondiffusive chemistry advances the production of many COMs to much earlier times and lower temperatures than in previous model implementations. Those species may form either as by-products of simple-ice production, or via early photochemistry within the ices while external UV photons can still penetrate. Cosmic ray-induced photochemistry is less important than in past models, although it affects some species strongly over long timescales. Another production regime occurs during the high-temperature desorption of solid water, whereby radicals trapped in the ice are released onto the grain/ice surface, where they rapidly react. Several recently proposed gas-phase COM-production mechanisms are also introduced, but they rarely dominate. New surface/ice reactions involving CH and CH2are found to contribute substantially to the formation of certain COMs.

     
    more » « less
  2. null (Ed.)
    ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b. 
    more » « less
  3. Abstract Chemical models and experiments indicate that interstellar dust grains and their ice mantles play an important role in the production of complex organic molecules (COMs). To date, the most complex solid-phase molecule detected with certainty in the interstellar medium is methanol, but the James Webb Space Telescope (JWST) may be able to identify still larger organic species. In this study, we use a coupled chemodynamical model to predict new candidate species for JWST detection toward the young star-forming core Cha-MMS1, combining the gas–grain chemical kinetic code MAGICKAL with a 1D radiative hydrodynamics simulation using Athena++ . With this model, the relative abundances of the main ice constituents with respect to water toward the core center match well with typical observational values, providing a firm basis to explore the ice chemistry. Six oxygen-bearing COMs (ethanol, dimethyl ether, acetaldehyde, methyl formate, methoxy methanol, and acetic acid), as well as formic acid, show abundances as high as, or exceeding, 0.01% with respect to water ice. Based on the modeled ice composition, the infrared spectrum is synthesized to diagnose the detectability of the new ice species. The contribution of COMs to IR absorption bands is minor compared to the main ice constituents, and the identification of COM ice toward the core center of Cha-MMS1 with the JWST NIRCAM/Wide Field Slitless Spectroscopy (2.4–5.0 μ m) may be unlikely. However, MIRI observations (5–28 μ m) toward COM-rich environments where solid-phase COM abundances exceed 1% with respect to the column density of water ice might reveal the distinctive ice features of COMs. 
    more » « less
  4. ABSTRACT The detection of many complex organic molecules (COMs) in interstellar space has sparked the study of their origins. While the formation of COMs detected in hot cores is attributed to photochemistry on warming grain surfaces followed by recombination of radicals and desorption, the formation routes in colder regions are still a debated issue with a number of theories such as cosmic ray bombardment on interstellar ice mantles or non-diffusive surface chemistry. Here, we present another method with reactions involving metastable atomic oxygen in the O(1D) state, which is initially produced by photodissociation of oxygen-containing species in interstellar ices. As a first example, we study the reactions of metastable oxygen atoms and methane in ices to form both formaldehyde and methanol. The reaction is studied incorporating two different surface processes: diffusive and non-diffusive chemistry. The formation of methanol and formaldehyde via metastable oxygen atoms is compared with well-known formation routes of both to understand the O(1D) contributions at different temperatures. 
    more » « less
  5. Abstract

    Ice chemistry in the dense, cold interstellar medium (ISM) is probably responsible for the formation of interstellar complex organic molecules (COMs). Recent laboratory experiments performed atT∼ 4 K have shown that irradiation of CO:N2ice samples analog to the CO-rich interstellar ice layer can contribute to the formation of COMs when H2molecules are present. We have tested this organic chemistry under a broader range of conditions relevant to the interior of dense clouds by irradiating CO:15N2:H2ice samples with 2 keV electrons in the 4–15 K temperature range. The H2ice abundance depended on both, the ice formation temperature and the thermal evolution of the samples. Formation of H-bearing organics such as formaldehyde (H2CO), ketene (C2H2O), and isocyanic acid (H15NCO) was observed upon irradiation of ice samples formed at temperatures up to 10 K, and also in ices formed at 6 K and subsequently warmed up and irradiated at temperatures up to 15 K. These results suggest that a fraction of the H2molecules in dense cloud interiors might be entrapped in the CO-rich layer of interstellar ice mantles, and that energetic processing of this layer could entail an additional contribution to the formation of COMs in the coldest regions of the ISM.

     
    more » « less