skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the Impacts of Daytime Boundary Layer Clouds on Surface Energy Fluxes and Boundary Layer Structure During CHEESEHEAD19
Award ID(s):
1822420
PAR ID:
10339150
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
5
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct numerical simulation (DNS) of a transitional boundary layer over a plate with an elliptical leading edge. Navier-Stokes was discretized on a curvilinear grid and solved using a finite volume DNS code. A fractional-step algorithm was adopted, and the spatial discretization was a staggered volume-flux formulation. The viscous terms were integrated in time implicitly using the Crank-Nicolson and the advections terms were treated explicitly using the Adams-Bashforth. Pressure was treated using implicit Euler in the δp-form. The pressure equation was Fourier transformed in the span, and the resulting Helmholtz equation was solved for every spanwise wavenumber using two-dimensional multi-grid. After the simulation has reached a statistical stationary state, 4701 frames of data, which includes the 3 components of the velocity vector and the pressure, are generated and written in files that can be accessed directly by the database (FileDB system). Since the grid is staggered, data at the wall are not stored in the database. However, JHTDB provides values in the region between the wall and the first grid point, y∈[0, 0.0036], using 4th-order Lagrange polynomial inter- and extrapolation. The y-locations of the grid points in the vertical direction can be downloaded from this text file. 
    more » « less
  2. null (Ed.)
  3. Abstract A simple, flow-physics-based model of flat-plate, transitional boundary layer skin friction and heat transfer is presented. The model is based on the assumption of negligible time-, spanwise-, and streamwise-average wall-normal velocity at the top of the boundary layer. This results in a threefold increase in boundary layer thickness over the transition region. This simple velocity assumption and its boundary-layer growth implications seem to be reasonably consistent with more sophisticated (direct numerical simulation (DNS)) modeling simulations. Only two modeling parameters need to be assumed, the Reynolds numbers at the onset and at the completion of transition, for which there is guidance based on freestream turbulence intensity for smooth plates. Several experimental datasets for air are modeled. New criteria are proposed to help define the onset and completion of transition: zero net vertical (wall-normal) velocity or mass flux (integrated in time and space, spanwise and streamwise) at the top of the boundary layer, and tripling of boundary layer thickness. Also presented is a minor improvement to a previously published unheated starting length factor for flat-plate laminar boundary layers with uniform wall heat flux. 
    more » « less