skip to main content


Title: Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values
We investigate the fairness concerns of training a machine learning model using data with missing values. Even though there are a number of fairness intervention methods in the literature, most of them require a complete training set as input. In practice, data can have missing values, and data missing patterns can depend on group attributes (e.g. gender or race). Simply applying off-the-shelf fair learning algorithms to an imputed dataset may lead to an unfair model. In this paper, we first theoretically analyze different sources of discrimination risks when training with an imputed dataset. Then, we propose an integrated approach based on decision trees that does not require a separate process of imputation and learning. Instead, we train a tree with missing incorporated as attribute (MIA), which does not require explicit imputation, and we optimize a fairness-regularized objective function. We demonstrate that our approach outperforms existing fairness intervention methods applied to an imputed dataset, through several experiments on real-world datasets.  more » « less
Award ID(s):
2040880 1926925 1845852
NSF-PAR ID:
10339230
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
36
Issue:
9
ISSN:
2159-5399
Page Range / eLocation ID:
9558 to 9566
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In human networks, nodes belonging to a marginalized group often have a disproportionate rate of unknown or missing features. This, in conjunction with graph structure and known feature biases, can cause graph feature imputation algorithms to predict values for unknown features that make the marginalized group's feature values more distinct from the the dominant group's feature values than they are in reality. We call this distinction the discrimination risk. We prove that a higher discrimination risk can amplify the unfairness of a machine learning model applied to the imputed data. We then formalize a general graph feature imputation framework called mean aggregation imputation and theoretically and empirically characterize graphs in which applying this framework can yield feature values with a high discrimination risk. We propose a simple algorithm to ensure mean aggregation-imputed features provably have a low discrimination risk, while minimally sacrificing reconstruction error (with respect to the imputation objective). We evaluate the fairness and accuracy of our solution on synthetic and real-world credit networks. 
    more » « less
  2. Regional morphological analysis represents a crucial step in most neuroimaging studies. Results from brain segmentation techniques are intrinsically prone to certain degrees of variability, mainly as results of suboptimal segmentation. To reduce this inherent variability, the errors are often identified through visual inspection and then corrected (semi)manually. Identification and correction of incorrect segmentation could be very expensive for large-scale studies. While identification of the incorrect results can be done relatively fast even with manual inspection, the correction step is extremely time-consuming, as it requires training staff to perform laborious manual corrections. Here we frame the correction phase of this problem as a missing data problem. Instead of manually adjusting the segmentation outputs, our computational approach aims to derive accurate morphological measures by machine learning imputation. Data imputation techniques may be used to replace missing or incorrect region average values with carefully chosen imputed values, all of which are computed based on other available multivariate informa- tion. We examined our approach of correcting segmentation outputs on a cohort of 970 subjects, which were undergone an extensive, time-consuming, manual post-segmentation correction. A random forest imputation technique recovered the gold standard results with a significant accuracy (r = 0.93, p < 0.0001; when 30% of the segmentations were considered incorrect in a non-random fashion). The random forest technique proved to be most effective for big data studies (N > 250). 
    more » « less
  3. Genotype imputation, where missing genotypes can be computationally imputed, is an essential tool in genomic analysis ranging from genome wide associations to phenotype prediction. Traditional genotype imputation methods are typically based on haplotype-clustering algorithms, hidden Markov models (HMMs), and statistical inference. Deep learning-based methods have been recently reported to suitably address the missing data problems in various fields. To explore the performance of deep learning for genotype imputation, in this study, we propose a deep model called a sparse convolutional denoising autoencoder (SCDA) to impute missing genotypes. We constructed the SCDA model using a convolutional layer that can extract various correlation or linkage patterns in the genotype data and applying a sparse weight matrix resulted from the L1 regularization to handle high dimensional data. We comprehensively evaluated the performance of the SCDA model in different scenarios for genotype imputation on the yeast and human genotype data, respectively. Our results showed that SCDA has strong robustness and significantly outperforms popular reference-free imputation methods. This study thus points to another novel application of deep learning models for missing data imputation in genomic studies. 
    more » « less
  4. Abstract Background Behavior and health are inextricably linked. As a result, continuous wearable sensor data offer the potential to predict clinical measures. However, interruptions in the data collection occur, which create a need for strategic data imputation. Objective The objective of this work is to adapt a data generation algorithm to impute multivariate time series data. This will allow us to create digital behavior markers that can predict clinical health measures. Methods We created a bidirectional time series generative adversarial network to impute missing sensor readings. Values are imputed based on relationships between multiple fields and multiple points in time, for single time points or larger time gaps. From the complete data, digital behavior markers are extracted and are mapped to predicted clinical measures. Results We validate our approach using continuous smartwatch data for n = 14 participants. When reconstructing omitted data, we observe an average normalized mean absolute error of 0.0197. We then create machine learning models to predict clinical measures from the reconstructed, complete data with correlations ranging from r = 0.1230 to r = 0.7623. This work indicates that wearable sensor data collected in the wild can be used to offer insights on a person's health in natural settings. 
    more » « less
  5. Simsekler, Mecit Can (Ed.)
    Missing data presents a challenge for machine learning applications specifically when utilizing electronic health records to develop clinical decision support systems. The lack of these values is due in part to the complex nature of clinical data in which the content is personalized to each patient. Several methods have been developed to handle this issue, such as imputation or complete case analysis, but their limitations restrict the solidity of findings. However, recent studies have explored how using some features as fully available privileged information can increase model performance including in SVM. Building on this insight, we propose a computationally efficient kernel SVM-based framework ( l 2 -SVMp+) that leverages partially available privileged information to guide model construction. Our experiments validated the superiority of l 2 -SVMp+ over common approaches for handling missingness and previous implementations of SVMp+ in both digit recognition, disease classification and patient readmission prediction tasks. The performance improves as the percentage of available privileged information increases. Our results showcase the capability of l 2 -SVMp+ to handle incomplete but important features in real-world medical applications, surpassing traditional SVMs that lack privileged information. Additionally, l 2 -SVMp+ achieves comparable or superior model performance compared to imputed privileged features. 
    more » « less