- Award ID(s):
- 1851390
- NSF-PAR ID:
- 10339231
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 916
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Direct numerical simulations are performed to compare the evolution of turbulent stratified shear layers with different density gradient profiles at a high Reynolds number. The density profiles include uniform stratification, two-layer hyperbolic tangent profile and a composite of these two profiles. All profiles have the same initial bulk Richardson number ( $$Ri_{b,0}$$ R i b , 0 ); however, the minimum gradient Richardson number and the distribution of density gradient across the shear layer are varied among the cases. The objective of the study is to provide a comparative analysis of the evolution of the shear layers in term of shear layer growth, turbulent kinetic energy as well as the mixing efficiency and its parameterization. The evolution of the shear layers in all cases shows the development of Kelvin–Helmholtz billows, the transition to turbulence by secondary instabilities followed by the decay of turbulence. Comparison among the cases reveals that the amount of turbulent mixing varies with the density gradient distribution inside the shear layer. The minimum gradient Richardson number and the initial bulk Richardson number do not correlate well with the integrated TKE production, dissipation and buoyancy flux. The bulk mixing efficiency for fixed $$Ri_{b,0}$$ R i b , 0 is found to be highest in the case with two-layer density profile and lowest in the case with uniform stratification. However, the parameterizations of the flux coefficient based on buoyancy Reynolds number and the ratio of Ozmidov and Ellison scales show similar scaling in all cases.more » « less
-
null (Ed.)Ekman layers develop at the boundaries of the Earth’s fluid core in response to precession. Instabilities in these layers lead to turbulence when a local Reynolds number, Re, based on the thickness of the Ekman layer, exceeds a critical value. The transition to turbulence is often assessed using experiments for steady Ekman layers, where the interior geostrophic flow is independent of time. Precessionally driven flow varies on diurnal timescales, so the transition to turbulence may occur at a different value of Re.We use 3-D numerical calculations in a local Cartesian geometry to assess the transition to turbulence in precessional flow. Calculations retain the horizontal component of the rotation vector and account for the influence of fluid stratification. The transition to turbulence in a neutrally stratified fluid occurs near Re = 500, which is higher than the value Re = 150 usually cited for steady Ekman layers. However, it is comparable to the nominal value for precessional flow in the Earth. Complications due to fluid stratification or a magnetic field can suppress the transition to turbulence, reducing the likelihood of turbulent Ekman layers in the Earth’s core.more » « less
-
Abstract The flux Richardson number
R f , also called the mixing efficiency of stratified turbulence, is important in determining geophysical flow phenomena such as ocean circulation and air‐sea transports. MeasuringR f in the field is usually difficult, thus parameterization ofR f based on readily observed properties is essential. Here, estimates ofR f in a strongly turbulent, sediment‐stratified estuarine flow are obtained from measurements of covariance‐derived turbulent buoyancy fluxes (B ) and spectrally fitted values of the dissipation rate of turbulent kinetic energy (ε ). We test scalings forR f in terms of the buoyancy Reynolds number (Re b ), the gradient Richardson number (Ri ), and turbulent Froude number (Fr t ). Neither theRe b ‐based nor theRi ‐based scheme is able to describe the observed variations inR f , but theFr t ‐based parameterization works well. These findings support further use of theFr t ‐ based parameterization in turbulent oceanic and estuarine environments. -
Abstract Stratification can cause turbulence spectra to deviate from Kolmogorov's isotropic
power law scaling in the universal equilibrium range at high Reynolds numbers. However, a consensus has not been reached with regard to the exact shape of the spectra. Here we propose a shape of the turbulent kinetic energy and temperature spectra in horizontal wavenumber for the equilibrium range that consists of three regimes at small Froude number: the buoyancy subrange, a transition region, and the isotropic inertial subrange through dimensional analysis and substantial revision of previous theoretical approximation. These spectral regimes are confirmed by various observations in the atmospheric boundary layer. The representation of the transition region in direct numerical simulations will require large‐scale separation between the Dougherty‐Ozmidov scale and the Kolmogorov scale for strongly stratified turbulence at high Reynolds numbers, which is still challenging computationally. In addition, we suggest that the failure of Monin‐Obukhov similarity theory in the very stable atmospheric boundary layer is due to the fact that it does not consider the buoyancy scale that characterizes the transition region. -
Abstract Time series of in situ measured velocity and suspended sediment concentration from Qiantang Estuary (China), and estimates of turbulence and sediment stratification parameters are presented. The data span a period of 9 days, and after phase averaged, they are used to explore spring‐neap tidal variations in flow, turbulence, and sediment stratification. A local balance between shear production, sediment‐induced buoyancy flux, and dissipation is found to hold during ebb for both neap and spring tides. During flood elevated turbulence dissipation rates are observed, attributed to nonlocal turbulence, most likely due to horizontal advection. Our results show that the effect of sediment stratification is successfully parameterized by adding the Monin‐Obukhov length scale to the classical logarithmic layer theory. Flood‐ebb asymmetry in both
Ri g andR f is observed, with higher values attained during flood due to the higher sediment concentrations and the corresponding weaker velocity shear found at these times.R f is found to increase withRi g whenRi g < 0.25, and it attains a maximum value of ~0.2. Our estimates, consistently with those from previous studies, fall slightly below the commonly used theoretical predictions. Sediment stratification contributes to the decay of turbulence, and weak mixing still exists under highRi g numbers.