skip to main content


Title: Conditions for turbulent Ekman layers in precessionally driven flow
Ekman layers develop at the boundaries of the Earth’s fluid core in response to precession. Instabilities in these layers lead to turbulence when a local Reynolds number, Re, based on the thickness of the Ekman layer, exceeds a critical value. The transition to turbulence is often assessed using experiments for steady Ekman layers, where the interior geostrophic flow is independent of time. Precessionally driven flow varies on diurnal timescales, so the transition to turbulence may occur at a different value of Re.We use 3-D numerical calculations in a local Cartesian geometry to assess the transition to turbulence in precessional flow. Calculations retain the horizontal component of the rotation vector and account for the influence of fluid stratification. The transition to turbulence in a neutrally stratified fluid occurs near Re = 500, which is higher than the value Re = 150 usually cited for steady Ekman layers. However, it is comparable to the nominal value for precessional flow in the Earth. Complications due to fluid stratification or a magnetic field can suppress the transition to turbulence, reducing the likelihood of turbulent Ekman layers in the Earth’s core.  more » « less
Award ID(s):
1915807
NSF-PAR ID:
10218706
Author(s) / Creator(s):
Date Published:
Journal Name:
Geophysical journal international
Volume:
225
Issue:
4
ISSN:
1365-246X
Page Range / eLocation ID:
no assigned
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct numerical simulations are performed to investigate a stratified shear layer at high Reynolds number ( $Re$ ) in a study where the Richardson number ( $Ri$ ) is varied among cases. Unlike previous work on a two-layer configuration in which the shear layer resides between two layers with constant density, an unbounded fluid with uniform stratification is considered here. The evolution of the shear layer includes a primary Kelvin–Helmholtz shear instability followed by a wide range of secondary shear and convective instabilities, similar to the two-layer configuration. During transition to turbulence, the shear layers at low $Ri$ exhibit a period of thickness contraction (not observed at lower $Re$ ) when the momentum and buoyancy fluxes are counter-gradient. The behaviour in the turbulent regime is significantly different from the case with a two-layer density profile. The transition layers, which are zones with elevated shear and stratification that form at the shear-layer edges, are stronger and also able to support a significant internal wave flux. After the shear layer becomes turbulent, mixing in the transition layers is shown to be more efficient than that which develops in the centre of the shear layer. Overall, the cumulative mixing efficiency ( $E^C$ ) is larger than the often assumed value of 1/6. Also, $E^C$ is found to be smaller than that in the two-layer configuration at moderate Ri . It is relatively less sensitive to background stratification, exhibiting little variation for $0.08 \leqslant Ri \leqslant 0.2$ . The dependence of mixing efficiency on buoyancy Reynolds number during the turbulence phase is qualitatively similar to homogeneous sheared turbulence. 
    more » « less
  2. The connection between the heat transfer and characteristic flow velocities of planetary core-style convection remains poorly understood. To address this, we present novel laboratory models of rotating Rayleigh–Bénard convection in which heat and momentum transfer are simultaneously measured. Using water (Prandtl number, Pr≃6) and cylindrical containers of diameter-to-height aspect ratios of Γ≃3,1.5,0.75, the non-dimensional rotation period (Ekman number, E) is varied between 10−7≲E≲3×10−5 and the non-dimensional convective forcing (Rayleigh number, Ra) ranges from 107≲Ra≲1012. Our heat transfer data agree with those of previous studies and are largely controlled by boundary layer dynamics. We utilize laser Doppler velocimetry (LDV) to obtain experimental point measurements of bulk axial velocities, resulting in estimates of the non-dimensional momentum transfer (Reynolds number, Re) with values between 4×102≲Re≲5×104. Behavioral transitions in the velocity data do not exist where transitions in heat transfer behaviors occur, indicating that bulk dynamics are not controlled by the boundary layers of the system. Instead, the LDV data agree well with the diffusion-free Coriolis–Inertia–Archimedian (CIA) scaling over the range of Ra explored. Furthermore, the CIA scaling approximately co-scales with the Viscous–Archimedian–Coriolis (VAC) scaling over the parameter space studied. We explain this observation by demonstrating that the VAC and CIA relations will co-scale when the local Reynolds number in the fluid bulk is of order unity. We conclude that in our experiments and similar laboratory and numerical investigations with E≳10−7, Ra≲1012, Pr≃7, heat transfer is controlled by boundary layer physics while quasi-geostrophically turbulent dynamics relevant to core flows robustly exist in the fluid bulk. 
    more » « less
  3. Andrew Soward (Ed.)
    Rotating convective turbulence is ubiquitously found across geo- physical settings, such as surface and subsurface oceans, plane- tary atmospheres, molten metal planetary cores, magma chambers, magma oceans, and basal magma oceans. Depending on the thermal and material properties of the system, buoyant convection can be driven thermally or compositionally, where a Prandtl number (Pr = ν/κi) defines the characteristic diffusion properties of the system, with κi = κT representing thermal diffusion and κi = κC representing chemical diffusion. These numbers vary widely for geophysical sys- tems; for example, the liquid iron undergoing thermal-compositional convection in Earth’s core is defined by PrT ≈ 0.1 and PrC ≈ 100, while a thermally-driven liquid silicate magma ocean is defined by PrT ≈ 100. Currently, most numerical and laboratory data for rotat- ing convective turbulent flows exists at Pr = O(1); high Pr rotating convection relevant to compositionally-driven core flow and other systems is less commonly studied. Here, we address this deficit by carrying out a broad suite of rotating convection experiments made over a range of Pr values, employing water and three different sil- icone oils as our working fluids (Pr = 6, 41, 206, and 993). Using measurements of flow velocities (Reynolds, Re) and heat transfer effi- ciency (Nusselt, Nu), a baroclinic torque balance is found to describe the turbulence regardless of Prandtl number so long as Re is suf- ficiently large (Re 10). Estimated turbulent scales are found to remain close to onset scales in all experiments, a result that may extrapolate to planetary settings. Lastly, we use our data to build Pr-dependent predictive nondimensional and dimensional scaling relations for rotating convective velocities that can be applied across a broad range of geophysical fluid dynamical settings. 
    more » « less
  4. We numerically and theoretically investigate the Boussinesq Eady model, where a rapidly rotating density-stratified layer of fluid is subject to a meridional temperature gradient in thermal wind balance with a uniform vertically sheared zonal flow. Through a suite of numerical simulations, we show that the transport properties of the resulting turbulent flow are governed by quasigeostrophic (QG) dynamics in the rapidly rotating strongly stratified regime. The ‘vortex gas’ scaling predictions put forward in the context of the two-layer QG model carry over to this fully three-dimensional system: the functional dependence of the meridional flux on the control parameters is the same, the two adjustable parameters entering the theory taking slightly different values. In line with the QG prediction, the meridional heat flux is depth-independent. The vertical heat flux is such that turbulence transports buoyancy along isopycnals, except in narrow layers near the top and bottom boundaries, the thickness of which decreases as the diffusivities go to zero. The emergent (re)stratification is set by a simple balance between the vertical heat flux and diffusion along the vertical direction. Overall, this study demonstrates how the vortex-gas scaling theory can be adapted to quantitatively predict the magnitude and vertical structure of the meridional and vertical heat fluxes, and of the emergent stratification, without additional fitting parameters. 
    more » « less
  5. Earth’s magnetic field is generated by turbulent motion in its fluid outer core. Although the bulk of the outer core is vigorously convecting and well mixed, some seismic, geomagnetic and geodynamic evidence suggests that a global stably stratified layer exists at the top of Earth’s core. Such a layer would strongly influence thermal, chemical and momentum exchange across the core–mantle boundary and thus have important implications for the dynamics and evolution of the core. Here we argue that the relevant scenario is not global stratification, but rather regional stratification arising solely from the lateral variations in heat flux at the core–mantle boundary. Using our extensive suite of numerical simulations of the dynamics of the fluid core with het- erogeneous core–mantle boundary heat flux, we predict that thermal regional inversion layers extend hundreds of kilometres into the core under anomalously hot regions of the lowermost mantle. Although the majority of the outermost core remains actively convecting, sufficiently large and strong regional inversion layers produce a one-dimensional temperature profile that mimics a globally stratified layer below the core–mantle boundary—an apparent thermal stratification despite the average heat flux across the core–mantle boundary being strongly superadiabatic. 
    more » « less