skip to main content


Title: High-Resolution Spatio-Temporal Model for County-Level COVID-19 Activity in the U.S.
We present an interpretable high-resolution spatio-temporal model to estimate COVID-19 deaths together with confirmed cases 1 week ahead of the current time, at the county level and weekly aggregated, in the United States. A notable feature of our spatio-temporal model is that it considers the (1) temporal auto- and pairwise correlation of the two local time series (confirmed cases and deaths from the COVID-19), (2) correlation between locations (propagation between counties), and (3) covariates such as local within-community mobility and social demographic factors. The within-community mobility and demographic factors, such as total population and the proportion of the elderly, are included as important predictors since they are hypothesized to be important in determining the dynamics of COVID-19. To reduce the model’s high dimensionality, we impose sparsity structures as constraints and emphasize the impact of the top 10 metropolitan areas in the nation, which we refer to (and treat within our models) as hubs in spreading the disease. Our retrospective out-of-sample county-level predictions were able to forecast the subsequently observed COVID-19 activity accurately. The proposed multivariate predictive models were designed to be highly interpretable, with clear identification and quantification of the most important factors that determine the dynamics of COVID-19. Ongoing work involves incorporating more covariates, such as education and income, to improve prediction accuracy and model interpretability.  more » « less
Award ID(s):
1650913
NSF-PAR ID:
10339320
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Management Information Systems
Volume:
12
Issue:
4
ISSN:
2158-656X
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The global spread of COVID-19, the disease caused by the novel coronavirus SARS-CoV-2, has casted a significant threat to mankind. As the COVID-19 situation continues to evolve, predicting localized disease severity is crucial for advanced resource allocation. This paper proposes a method named COURAGE (COUnty aggRegation mixup AuGmEntation) to generate a short-term prediction of 2-week-ahead COVID-19 related deaths for each county in the United States, leveraging modern deep learning techniques. Specifically, our method adopts a self-attention model from Natural Language Processing, known as the transformer model, to capture both short-term and long-term dependencies within the time series while enjoying computational efficiency. Our model solely utilizes publicly available information for COVID-19 related confirmed cases, deaths, community mobility trends and demographic information, and can produce state-level predictions as an aggregation of the corresponding county-level predictions. Our numerical experiments demonstrate that our model achieves the state-of-the-art performance among the publicly available benchmark models. 
    more » « less
  2. This study explored how population mobility flows form commuting networks across US counties and influence the spread of COVID-19. We utilized 3-level mixed effects negative binomial regression models to estimate the impact of network COVID-19 exposure on county confirmed cases and deaths over time. We also conducted weighting-based analyses to estimate the causal effect of network exposure. Results showed that commuting networks matter for COVID-19 deaths and cases, net of spatial proximity, socioeconomic, and demographic factors. Different local racial and ethnic concentrations are also associated with unequal outcomes. These findings suggest that commuting is an important causal mechanism in the spread of COVID-19 and highlight the significance of interconnected of communities. The results suggest that local level mitigation and prevention efforts are more effective when complemented by similar efforts in the network of connected places. Implications for research on inequality in health and flexible work arrangements are discussed. 
    more » « less
  3. The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatiotemporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting. The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when compared with more complicated models. We are currently integrating our methods as a part of our weekly forecasts that we provide state and federal authorities. 
    more » « less
  4. Wen, Feng (Ed.)
    Background Since 1999, West Nile virus (WNV) has moved rapidly across the United States, resulting in tens of thousands of human cases. Both the number of human cases and the minimum infection rate (MIR) in vector mosquitoes vary across time and space and are driven by numerous abiotic and biotic forces, ranging from differences in microclimates to socio-demographic factors. Because the interactions among these multiple factors affect the locally variable risk of WNV illness, it has been especially difficult to model human disease risk across varying spatial and temporal scales. Cook and DuPage Counties, comprising the city of Chicago and surrounding suburbs, experience some of the highest numbers of human neuroinvasive cases of WNV in the United States. Despite active mosquito control efforts, there is consistent annual WNV presence, resulting in more than 285 confirmed WNV human cases and 20 deaths from the years 2014–2018 in Cook County alone. Methods A previous Chicago-area WNV model identified the fifty-five most high and low risk locations in the Northwest Mosquito Abatement District (NWMAD), an enclave ¼ the size of the combined Cook and DuPage county area. In these locations, human WNV risk was stratified by model performance, as indicated by differences in studentized residuals. Within these areas, an additional two-years of field collections and data processing was added to a 12-year WNV dataset that includes human cases, MIR, vector abundance, and land-use, historical climate, and socio-economic and demographic variables, and was assessed by an ultra-fine-scale (1 km spatial x 1 week temporal resolution) multivariate logistic regression model. Results Multivariate statistical methods applied to the ultra-fine-scale model identified fewer explanatory variables while improving upon the fit of the previous model. Beyond MIR and climatic factors, efforts to acquire additional covariates only slightly improved model predictive performance. Conclusions These results suggest human WNV illness in the Chicago area may be associated with fewer, but increasingly critical, key variables at finer scales. Given limited resources, these findings suggest large variations in model performance occur, depending on covariate availability, and provide guidance in variable selection for optimal WNV human illness modeling. 
    more » « less
  5. Abstract The objective of this study was to investigate the importance of multiple county-level features in the trajectory of COVID-19. We examined feature importance across 2787 counties in the United States using data-driven machine learning models. Existing mathematical models of disease spread usually focused on the case prediction with different infection rates without incorporating multiple heterogeneous features that could impact the spatial and temporal trajectory of COVID-19. Recognizing this, we trained a data-driven model using 23 features representing six key influencing factors affecting the pandemic spread: social demographics of counties, population activities, mobility within the counties, movement across counties, disease attributes, and social network structure. Also, we categorized counties into multiple groups according to their population densities, and we divided the trajectory of COVID-19 into three stages: the outbreak stage, the social distancing stage, and the reopening stage. The study aimed to answer two research questions: (1) The extent to which the importance of heterogeneous features evolved at different stages; (2) The extent to which the importance of heterogeneous features varied across counties with different characteristics. We fitted a set of random forest models to determine weekly feature importance. The results showed that: (1) Social demographic features, such as gross domestic product, population density, and minority status maintained high-importance features throughout stages of COVID-19 across 2787 studied counties; (2) Within-county mobility features had the highest importance in counties with higher population densities; (3) The feature reflecting the social network structure (Facebook, social connectedness index), had higher importance for counties with higher population densities. The results showed that the data-driven machine learning models could provide important insights to inform policymakers regarding feature importance for counties with various population densities and at different stages of a pandemic life cycle. 
    more » « less