skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure Assisted NMF Methods for Separation of Degenerate Mixture Data with Application to NMR Spectroscopy
In this paper, we develop structure assisted nonnegative matrix factorization (NMF) methods for blind source separation of degenerate data. The motivation originates from nuclear magnetic resonance (NMR) spectroscopy, where a multiple mixture NMR spectra are recorded to identify chemical compounds with similar structures. Consider the linear mixing model (LMM), we aim to identify the chemical compounds involved when the mixing process is known to be nearly singular. We first consider a class of data with dominant interval(s) (DI) where each of source signals has dominant peaks over others. Besides, a nearly singular mixing process produces degenerate mixtures. The DI condition implies clustering structures in the data points. Hence, the estimation of the mixing matrix could be achieved by data clustering. Due to the presence of the noise and the degeneracy of the data, a small deviation in the estimation may introduce errors in the output. To resolve this problem and improve robustness of the separation, methods are developed in two aspects. One is to find better estimation of the mixing matrix by allowing a constrained perturbation to the clustering output, and it can be achieved by a quadratic programming. The other is to seek sparse source signals by exploiting the DI condition, and it solves an 1 optimization. If no source information is available, we propose to adopt the nonnegative matrix factorization approach by incorporating the matrix structure (parallel columns of the mixing matrix) into the cost function and develop multiplicative iteration rules for the numerical solutions. We present experimental results of NMR data to show the performance and reliability of the method in the applications arising in NMR spectroscopy.  more » « less
Award ID(s):
1924548
PAR ID:
10339326
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International journal of mathematics and computation
Volume:
33
Issue:
1
ISSN:
0974-570X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. K-means clustering is a widely used machine learning method for identifying patterns in large datasets. Recently, semidefinite programming (SDP) relaxations have been proposed for solving the K-means optimization problem, which enjoy strong statistical optimality guarantees. However, the prohibitive cost of implementing an SDP solver renders these guarantees inaccessible to practical datasets. In contrast, nonnegative matrix factorization (NMF) is a simple clustering algorithm widely used by machine learning practitioners, but it lacks a solid statistical underpinning and theoretical guarantees. In this paper, we consider an NMF-like algorithm that solves a nonnegative low-rank restriction of the SDP-relaxed K-means formulation using a nonconvex Burer--Monteiro factorization approach. The resulting algorithm is as simple and scalable as state-of-the-art NMF algorithms while also enjoying the same strong statistical optimality guarantees as the SDP. In our experiments, we observe that our algorithm achieves significantly smaller mis-clustering errors compared to the existing state-of-the-art while maintaining scalability. 
    more » « less
  2. Abstract. End-member mixing analysis (EMMA) is a method of interpreting stream water chemistry variations and is widely used for chemical hydrograph separation. It is based on the assumption that stream water is a conservative mixture of varying contributions from well-characterized source solutions (end-members). These end-members are typically identified by collecting samples of potential end-member source waters from within the watershed and comparing these to the observations. Here we introduce a complementary data-driven method (convex hull end-member mixing analysis – CHEMMA) to infer the end-member compositions and their associated uncertainties from the stream water observations alone. The method involves two steps. The first uses convex hull nonnegative matrix factorization (CH-NMF) to infer possible end-member compositions by searching for a simplex that optimally encloses the stream water observations. The second step uses constrained K-means clustering (COP-KMEANS) to classify the results from repeated applications of CH-NMF and analyzes the uncertainty associated with the algorithm. In an example application utilizing the 1986 to 1988 Panola Mountain Research Watershed dataset, CHEMMA is able to robustly reproduce the three field-measured end-members found in previous research using only the stream water chemical observations. CHEMMA also suggests that a fourth and a fifth end-member can be (less robustly) identified. We examine uncertainties in end-member identification arising from non-uniqueness, which is related to the data structure, of the CH-NMF solutions, and from the number of samples using both real and synthetic data. The results suggest that the mixing space can be identified robustly when the dataset includes samples that contain extremely small contributions of one end-member, i.e., samples containing extremely large contributions from one end-member are not necessary but do reduce uncertainty about the end-member composition. 
    more » « less
  3. Advances in single cell transcriptomics have allowed us to study the identity of single cells. This has led to the discovery of new cell types and high resolution tissue maps of them. Technologies that measure multiple modalities of such data add more detail, but they also complicate data integration. We offer an integrated analysis of the spatial location and gene expression profiles of cells to determine their identity. We propose scHybridNMF (single-cell Hybrid Nonnegative Matrix Factorization), which performs cell type identification by combining sparse nonnegative matrix factorization (sparse NMF) with k-means clustering to cluster high-dimensional gene expression and low-dimensional location data. We show that, under multiple scenarios, including the cases where there is a small number of genes profiled and the location data is noisy, scHybridNMF outperforms sparse NMF, k-means, and an existing method that uses a hidden Markov random field to encode cell location and gene expression data for cell type identification. 
    more » « less
  4. In this work, we consider the problem of mode clustering in Markov jump models. This model class consists of multiple dynamical modes with a switching sequence that determines how the system switches between them over time. Under different active modes, the observations can have different characteristics. Given the observations only and without knowing the mode sequence, the goal is to cluster the modes based on their transition distributions in the Markov chain to find a reduced-rank Markov matrix that is embedded in the original Markov chain. Our approach involves mode sequence estimation, mode clustering and reduced-rank model estimation, where mode clustering is achieved by applying the singular value decomposition and k-means. We show that, under certain conditions, the clustering error can be bounded, and the reduced-rank Markov chain is a good approximation to the original Markov chain. Through simulations, we show the efficacy of our approach and the application of our approach to real world scenarios. Index Terms—Switched model, Markov chain, clustering 
    more » « less
  5. In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, our method substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes. These advances can in turn significantly enhance the statistical power of downstream analyses, and ultimately improve scientific conclusions derived from microendoscopic data. 
    more » « less