skip to main content


Title: Limitations of Local Quantum Algorithms on Random Max-k-XOR and Beyond
We introduce a notion of \emph{generic local algorithm} which strictly generalizes existing frameworks of local algorithms such as \emph{factors of i.i.d.} by capturing local \emph{quantum} algorithms such as the Quantum Approximate Optimization Algorithm (QAOA). Motivated by a question of Farhi et al. [arXiv:1910.08187, 2019] we then show limitations of generic local algorithms including QAOA on random instances of constraint satisfaction problems (CSPs). Specifically, we show that any generic local algorithm whose assignment to a vertex depends only on a local neighborhood with o(n) other vertices (such as the QAOA at depth less than ϵlog(n)) cannot arbitrarily-well approximate boolean CSPs if the problem satisfies a geometric property from statistical physics called the coupled overlap-gap property (OGP) [Chen et al., Annals of Probability, 47(3), 2019]. We show that the random MAX-k-XOR problem has this property when k≥4 is even by extending the corresponding result for diluted k-spin glasses. Our concentration lemmas confirm a conjecture of Brandao et al. [arXiv:1812.04170, 2018] asserting that the landscape independence of QAOA extends to logarithmic depth -- in other words, for every fixed choice of QAOA angle parameters, the algorithm at logarithmic depth performs almost equally well on almost all instances. One of these concentration lemmas is a strengthening of McDiarmid's inequality, applicable when the random variables have a highly biased distribution, and may be of independent interest.  more » « less
Award ID(s):
1818914
NSF-PAR ID:
10339345
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with near-term quantum computers. As there are no algorithmic guarantee possible for QAOA to outperform classical computers, without a proof that bounded-error quantum polynomial time (BQP) ≠ nondeterministic polynomial time (NP), it is necessary to investigate the empirical advantages of QAOA. We identify a computational phase transition of QAOA when solving hard problems such as SAT—random instances are most difficult to train at a critical problem density. We connect the transition to the controllability and the complexity of QAOA circuits. Moreover, we find that the critical problem density in general deviates from the SAT-UNSAT phase transition, where the hardest instances for classical algorithms lies. Then, we show that the high problem density region, which limits QAOA’s performance in hard optimization problems (reachability deficits), is actually a good place to utilize QAOA: its approximation ratio has a much slower decay with the problem density, compared to classical approximate algorithms. Indeed, it is exactly in this region that quantum advantages of QAOA over classical approximate algorithms can be identified.

     
    more » « less
  2. We prove concentration bounds for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from \cite{DMRF22}; (ii) injective matrix product states; (iii) output states of dense Hamiltonian evolution, i.e. states of the form e ι H ( p ) ⋯ e ι H ( 1 ) | ψ 0 ⟩ for any n -qubit product state | ψ 0 ⟩ , where each H ( i ) can be any local commuting Hamiltonian satisfying a norm constraint, including dense Hamiltonians with interactions between any qubits. Our proofs use polynomial approximations to show that these states are close to local operators. This implies that the distribution of the Hamming weight of a computational basis measurement (and of other related observables) concentrates.An example of (iii) are the states produced by the quantum approximate optimisation algorithm (QAOA). Using our concentration results for these states, we show that for a random spin model, the QAOA can only succeed with negligible probability even at super-constant level p = o ( log ⁡ log ⁡ n ) , assuming a strengthened version of the so-called overlap gap property. This gives the first limitations on the QAOA on dense instances at super-constant level, improving upon the recent result [BGMZ22]. 
    more » « less
  3. We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers Gurobi and MQLib to solve the MaxCut problem on 3-regular graphs. We identify the minimum noiseless sampling frequency and depthprequired for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for large graph sizesN, a quantum device must support depthp > 11. Additionally, multi-shot QAOA is not efficient on large graphs, indicating that QAOAp ≤ 11 does not scale withN. These results limit achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.

     
    more » « less
  4. Abstract

    Realizing the potential of near-term quantum computers to solve industry-relevant constrained-optimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrained-optimization problem and demonstrate the largest-to-date execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this trade-off makes choosing good parameters difficult in general. We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.

     
    more » « less
  5. We present O(log logn)-round algorithms in the Massively Parallel Computation (MPC) model, with ˜O(n) memory per machine, that compute a maximal independent set, a 1 + ε approximation of maximum matching, and a 2 + ε approximation of minimum vertex cover, for any n-vertex graph and any constant ε > 0. These improve the state of the art as follows: • Our MIS algorithm leads to a simple O(log log Δ)-round MIS algorithm in the CONGESTED-CLIQUE model of distributed computing, which improves on the ˜O (plog Δ)-round algorithm of Ghaffari [PODC’17]. • OurO(log logn)-round (1+ε)-approximate maximum matching algorithm simplifies or improves on the following prior work: O(log2 logn)-round (1 + ε)-approximation algorithm of Czumaj et al. [STOC’18] and O(log logn)-round (1 + ε)- approximation algorithm of Assadi et al. [arXiv’17]. • Our O(log logn)-round (2+ε)-approximate minimum vertex cover algorithm improves on an O(log logn)-round O(1)- approximation of Assadi et al. [arXiv’17]. 
    more » « less