skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum and Classical Bayesian Agents
We describe a general approach to modeling rational decision-making agents who adopt either quantum or classical mechanics based on the Quantum Bayesian (QBist) approach to quantum theory. With the additional ingredient of a scheme by which the properties of one agent may influence another, we arrive at a flexible framework for treating multiple interacting quantum and classical Bayesian agents. We present simulations in several settings to illustrate our construction: quantum and classical agents receiving signals from an exogenous source, two interacting classical agents, two interacting quantum agents, and interactions between classical and quantum agents. A consistent treatment of multiple interacting users of quantum theory may allow us to properly interpret existing multi-agent protocols and could suggest new approaches in other areas such as quantum algorithm design.  more » « less
Award ID(s):
1818914 2116246
PAR ID:
10339349
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Quantum
Volume:
6
ISSN:
2521-327X
Page Range / eLocation ID:
713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Modeling is a significant piece of the puzzle in achieving safety certificates for distributed IoT and cyberphysical systems. From smart home devices to connected and autonomous vehicles, several modeling challenges like dynamic membership of participants and complex interaction patterns, span across application domains. Modeling multiple interacting vehicles can become unwieldy and impractical as vehicles change relative positions and lanes. In this paper, we present an egocentric abstraction for succinctly modeling local interactions among an arbitrary number of agents around an ego agent. These models abstract away the detailed behavior of the other agents and ignore present but physically distant agents. We show that this approach can capture interesting scenarios considered in the responsibility sensitive safety (RSS) framework for autonomous vehicles. As an illustration of how the framework can be useful for analysis, we prove safety of several highway driving scenarios using egocentric models. The proof technique also brings to the forefront the power of a classical verification approach, namely, inductive invariant assertions. We discuss possible generalizations of the analysis to other scenarios and applications. 
    more » « less
  2. Autonomous agents in a multi-agent system work with each other to achieve their goals. However, In a partially observable world, current multi-agent systems are often less effective in achieving their goals. This limitation is due to the agents’ lack of reasoning about other agents and their mental states. Another factor is the agents’ inability to share required knowledge with other agents. This paper addresses the limitations by presenting a general approach for autonomous agents to work together in a multi-agent system. In this approach, an agent applies two main concepts: goal reasoning- to determine what goals to pursue and share; Theory of mind-to select an agent(s) for sharing goals and knowledge. We evaluate the performance of our multi-agent system in a Marine Life Survey Domain and compare it to another multi-agent system that randomly selects agent(s) to delegates its goals. 
    more » « less
  3. This paper discusses the theory and algorithms for interacting large language model agents (LLMAs) using methods from statistical signal processing and microeconomics. While both fields are mature, their application to decision-making involving interacting LLMAs remains unexplored. Motivated by Bayesian sentiment analysis on online platforms, we construct interpretable models and stochastic control algorithms that enable LLMAs to interact and perform Bayesian inference. Because interacting LLMAs learn from both prior decisions and external inputs, they can exhibit bias and herding behavior. Thus, developing interpretable models and stochastic control algorithms is essential to understand and mitigate these behaviors. This paper has three main results. First, we show using Bayesian revealed preferences from microeconomics that an individual LLMA satisfies the necessary and sufficient conditions for rationally inattentive (bounded rationality) Bayesian utility maximization and, given an observation, the LLMA chooses an action that maximizes a regularized utility. Second, we utilize Bayesian social learning to construct interpretable models for LLMAs that interact sequentially with each other and the environment while performing Bayesian inference. Our proposed models capture the herding behavior exhibited by interacting LLMAs. Third, we propose a stochastic control framework to delay herding and improve state estimation accuracy under two settings: 1) centrally controlled LLMAs and 2) autonomous LLMAs with incentives. Throughout the paper, we numerically demonstrate the effectiveness of our methods on real datasets for hate speech classification and product quality assessment, using open-source models like LLaMA and Mistral and closed-source models like ChatGPT. The main takeaway of this paper, based on substantial empirical analysis and mathematical formalism, is that LLMAs act as rationally bounded Bayesian agents that exhibit social learning when interacting. Traditionally, such models are used in economics to study interacting human decision-makers. 
    more » « less
  4. Quantum algorithms are touted as a way around some classically intractable problems such as the simulation of quantum mechanics. At the end of all quantum algorithms is a quantum measurement whereby classical data is extracted and utilized. In fact, many of the modern hybrid-classical approaches are essentially quantum measurements of states with short quantum circuit descriptions. Here, we compare and examine three methods of extracting the time-dependent one-particle probability density from a quantum simulation: directZ-measurement, Bayesian phase estimation, and harmonic inversion. We have tested these methods in the context of the potential inversion problem of time-dependent density functional theory. Our test results suggest that direct measurement is the preferable method. We also highlight areas where the other two methods may be useful and report on tests using Rigetti's quantum virtual device. This study provides a starting point for imminent applications of quantum computing. 
    more » « less
  5. Observational learning models seek to understand how distributed agents learn from observing the actions of others. In the basic model, agents seek to choose between two alternatives, where the underlying value of each alternative is the same for each agent. Agents do not know this value but only observe a noisy signal of the value and make their decision based on this signal and observations of other agents’ actions. Here, instead we consider a scenario in which the choices faced by an agent exhibit a negative externality so that value of a choice may decrease depending on the history of other agents selecting that choice. We study the learning behavior of Bayesian agents with such an externality and show that this can lead to very different outcomes compared to models without such an externality. 
    more » « less