skip to main content


Title: Measuring Phylogenetic Information of Incomplete Sequence Data
Abstract Widely used approaches for extracting phylogenetic information from aligned sets of molecular sequences rely upon probabilistic models of nucleotide substitution or amino-acid replacement. The phylogenetic information that can be extracted depends on the number of columns in the sequence alignment and will be decreased when the alignment contains gaps due to insertion or deletion events. Motivated by the measurement of information loss, we suggest assessment of the effective sequence length (ESL) of an aligned data set. The ESL can differ from the actual number of columns in a sequence alignment because of the presence of alignment gaps. Furthermore, the estimation of phylogenetic information is affected by model misspecification. Inevitably, the actual process of molecular evolution differs from the probabilistic models employed to describe this process. This disparity means the amount of phylogenetic information in an actual sequence alignment will differ from the amount in a simulated data set of equal size, which motivated us to develop a new test for model adequacy. Via theory and empirical data analysis, we show how to disentangle the effects of gaps and model misspecification. By comparing the Fisher information of actual and simulated sequences, we identify which alignment sites and tree branches are most affected by gaps and model misspecification. [Fisher information; gaps; insertion; deletion; indel; model adequacy; goodness-of-fit test; sequence alignment.]  more » « less
Award ID(s):
1754142
NSF-PAR ID:
10339446
Author(s) / Creator(s):
; ;
Editor(s):
Ho, Simon
Date Published:
Journal Name:
Systematic Biology
Volume:
71
Issue:
3
ISSN:
1063-5157
Page Range / eLocation ID:
630 to 648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. dos Reis, Mario (Ed.)
    Abstract Ancestral sequence reconstruction (ASR) uses an alignment of extant protein sequences, a phylogeny describing the history of the protein family and a model of the molecular-evolutionary process to infer the sequences of ancient proteins, allowing researchers to directly investigate the impact of sequence evolution on protein structure and function. Like all statistical inferences, ASR can be sensitive to violations of its underlying assumptions. Previous studies have shown that, whereas phylogenetic uncertainty has only a very weak impact on ASR accuracy, uncertainty in the protein sequence alignment can more strongly affect inferred ancestral sequences. Here, we show that errors in sequence alignment can produce errors in ASR across a range of realistic and simplified evolutionary scenarios. Importantly, sequence reconstruction errors can lead to errors in estimates of structural and functional properties of ancestral proteins, potentially undermining the reliability of analyses relying on ASR. We introduce an alignment-integrated ASR approach that combines information from many different sequence alignments. We show that integrating alignment uncertainty improves ASR accuracy and the accuracy of downstream structural and functional inferences, often performing as well as highly accurate structure-guided alignment. Given the growing evidence that sequence alignment errors can impact the reliability of ASR studies, we recommend that future studies incorporate approaches to mitigate the impact of alignment uncertainty. Probabilistic modeling of insertion and deletion events has the potential to radically improve ASR accuracy when the model reflects the true underlying evolutionary history, but further studies are required to thoroughly evaluate the reliability of these approaches under realistic conditions. 
    more » « less
  2. Abstract

    Molecular phylogenies are a cornerstone of modern comparative biology and are commonly employed to investigate a range of biological phenomena, such as diversification rates, patterns in trait evolution, biogeography, and community assembly. Recent work has demonstrated that significant biases may be introduced into downstream phylogenetic analyses from processing genomic data; however, it remains unclear whether there are interactions among bioinformatic parameters or biases introduced through the choice of reference genome for sequence alignment and variant calling. We address these knowledge gaps by employing a combination of simulated and empirical data sets to investigate the extent to which the choice of reference genome in upstream bioinformatic processing of genomic data influences phylogenetic inference, as well as the way that reference genome choice interacts with bioinformatic filtering choices and phylogenetic inference method. We demonstrate that more stringent minor allele filters bias inferred trees away from the true species tree topology, and that these biased trees tend to be more imbalanced and have a higher center of gravity than the true trees. We find the greatest topological accuracy when filtering sites for minor allele count (MAC) >3–4 in our 51-taxa data sets, while tree center of gravity was closest to the true value when filtering for sites with MAC >1–2. In contrast, filtering for missing data increased accuracy in the inferred topologies; however, this effect was small in comparison to the effect of minor allele filters and may be undesirable due to a subsequent mutation spectrum distortion. The bias introduced by these filters differs based on the reference genome used in short read alignment, providing further support that choosing a reference genome for alignment is an important bioinformatic decision with implications for downstream analyses. These results demonstrate that attributes of the study system and dataset (and their interaction) add important nuance for how best to assemble and filter short-read genomic data for phylogenetic inference.

     
    more » « less
  3. Rosenberg, Michael (Ed.)
    Abstract Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species. 
    more » « less
  4. Background Transposable element (TE) polymorphisms are important components of population genetic variation. The functional impacts of TEs in gene regulation and generating genetic diversity have been observed in multiple species, but the frequency and magnitude of TE variation is under appreciated. Inexpensive and deep sequencing technology has made it affordable to apply population genetic methods to whole genomes with methods that identify single nucleotide and insertion/deletion polymorphisms. However, identifying TE polymorphisms, particularly transposition events or non-reference insertion sites can be challenging due to the repetitive nature of these sequences, which hamper both the sensitivity and specificity of analysis tools. Methods We have developed the tool RelocaTE2 for identification of TE insertion sites at high sensitivity and specificity. RelocaTE2 searches for known TE sequences in whole genome sequencing reads from second generation sequencing platforms such as Illumina. These sequence reads are used as seeds to pinpoint chromosome locations where TEs have transposed. RelocaTE2 detects target site duplication (TSD) of TE insertions allowing it to report TE polymorphism loci with single base pair precision. Results and Discussion The performance of RelocaTE2 is evaluated using both simulated and real sequence data. RelocaTE2 demonstrate high level of sensitivity and specificity, particularly when the sequence coverage is not shallow. In comparison to other tools tested, RelocaTE2 achieves the best balance between sensitivity and specificity. In particular, RelocaTE2 performs best in prediction of TSDs for TE insertions. Even in highly repetitive regions, such as those tested on rice chromosome 4, RelocaTE2 is able to report up to 95% of simulated TE insertions with less than 0.1% false positive rate using 10-fold genome coverage resequencing data. RelocaTE2 provides a robust solution to identify TE insertion sites and can be incorporated into analysis workflows in support of describing the complete genotype from light coverage genome sequencing. 
    more » « less
  5. To assess the conventional treatment in evolutionary inference of alignment gaps as missing data, we propose a simple nonparametric test of the null hypothesis that the locations of alignment gaps are independent of the nucleotide substitution or amino acid replacement process. When we apply the test to 1,390 protein alignments that are informed by protein tertiary structure and use a 5% significance level, the null hypothesis of independence between amino acid replacement and gap location is rejected for ∼65% of datasets. Via simulations that include substitution and insertion–deletion, we show that the test performs well with true alignments. When we simulate according to the null hypothesis and then apply the test to optimal alignments that are inferred by each of four widely used software packages, the null hypothesis is rejected too frequently. Via further simulations and analyses, we show that the overly frequent rejections of the null hypothesis are not solely due to weaknesses of widely used software for finding optimal alignments. Instead, our evidence suggests that optimal alignments are unrepresentative of true alignments and that biased evolutionary inferences may result from relying upon individual optimal alignments. 
    more » « less