skip to main content


Title: Alignment-Integrated Reconstruction of Ancestral Sequences Improves Accuracy
Abstract Ancestral sequence reconstruction (ASR) uses an alignment of extant protein sequences, a phylogeny describing the history of the protein family and a model of the molecular-evolutionary process to infer the sequences of ancient proteins, allowing researchers to directly investigate the impact of sequence evolution on protein structure and function. Like all statistical inferences, ASR can be sensitive to violations of its underlying assumptions. Previous studies have shown that, whereas phylogenetic uncertainty has only a very weak impact on ASR accuracy, uncertainty in the protein sequence alignment can more strongly affect inferred ancestral sequences. Here, we show that errors in sequence alignment can produce errors in ASR across a range of realistic and simplified evolutionary scenarios. Importantly, sequence reconstruction errors can lead to errors in estimates of structural and functional properties of ancestral proteins, potentially undermining the reliability of analyses relying on ASR. We introduce an alignment-integrated ASR approach that combines information from many different sequence alignments. We show that integrating alignment uncertainty improves ASR accuracy and the accuracy of downstream structural and functional inferences, often performing as well as highly accurate structure-guided alignment. Given the growing evidence that sequence alignment errors can impact the reliability of ASR studies, we recommend that future studies incorporate approaches to mitigate the impact of alignment uncertainty. Probabilistic modeling of insertion and deletion events has the potential to radically improve ASR accuracy when the model reflects the true underlying evolutionary history, but further studies are required to thoroughly evaluate the reliability of these approaches under realistic conditions.  more » « less
Award ID(s):
1817942
NSF-PAR ID:
10351543
Author(s) / Creator(s):
;
Editor(s):
dos Reis, Mario
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
12
Issue:
9
ISSN:
1759-6653
Page Range / eLocation ID:
1549 to 1565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ancestral sequence reconstruction (ASR) is a powerful tool to study the evolution of proteins and thus gain deep insight into the relationships among protein sequence, structure, and function. A major barrier to its broad use is the complexity of the task: it requires multiple software packages, complex file manipulations, and expert phylogenetic knowledge. Here we introducetopiary, a software pipeline that aims to overcome this barrier. To use topiary, users prepare a spreadsheet with a handful of sequences. Topiary then: (1) Infers the taxonomic scope for the ASR study and finds relevant sequences by BLAST; (2) Does taxonomically informed sequence quality control and redundancy reduction; (3) Constructs a multiple sequence alignment; (4) Generates a maximum‐likelihood gene tree; (5) Reconciles the gene tree to the species tree; (6) Reconstructs ancestral amino acid sequences; and (7) Determines branch supports. The pipeline returns annotated evolutionary trees, spreadsheets with sequences, and graphical summaries of ancestor quality. This is achieved by integrating modern phylogenetics software (Muscle5, RAxML‐NG, GeneRax, and PastML) with online databases (NCBI and the Open Tree of Life). In this paper, we introduce non‐expert readers to the steps required for ASR, describe the specific design choices made intopiary, provide a detailed protocol for users, and then validate the pipeline using datasets from a broad collection of protein families. Topiary is freely available for download:https://github.com/harmslab/topiary.

     
    more » « less
  2. Abstract Background Phylogenomic approaches have great power to reconstruct evolutionary histories, however they rely on multi-step processes in which each stage has the potential to affect the accuracy of the final result. Many studies have empirically tested and established methodology for resolving robust phylogenies, including selecting appropriate evolutionary models, identifying orthologs, or isolating partitions with strong phylogenetic signal. However, few have investigated errors that may be initiated at earlier stages of the analysis. Biases introduced during the generation of the phylogenomic dataset itself could produce downstream effects on analyses of evolutionary history. Transcriptomes are widely used in phylogenomics studies, though there is little understanding of how a poor-quality assembly of these datasets could impact the accuracy of phylogenomic hypotheses. Here we examined how transcriptome assembly quality affects phylogenomic inferences by creating independent datasets from the same input data representing high-quality and low-quality transcriptome assembly outcomes. Results By studying the performance of phylogenomic datasets derived from alternative high- and low-quality assembly inputs in a controlled experiment, we show that high-quality transcriptomes produce richer phylogenomic datasets with a greater number of unique partitions than low-quality assemblies. High-quality assemblies also give rise to partitions that have lower alignment ambiguity and less compositional bias. In addition, high-quality partitions hold stronger phylogenetic signal than their low-quality transcriptome assembly counterparts in both concatenation- and coalescent-based analyses. Conclusions Our findings demonstrate the importance of transcriptome assembly quality in phylogenomic analyses and suggest that a portion of the uncertainty observed in such studies could be alleviated at the assembly stage. 
    more » « less
  3. Abstract

    The nitrogenase metalloenzyme family, essential for supplying fixed nitrogen to the biosphere, is one of life's key biogeochemical innovations. The three forms of nitrogenase differ in their metal dependence, each binding either a FeMo‐, FeV‐, or FeFe‐cofactor where the reduction of dinitrogen takes place. The history of nitrogenase metal dependence has been of particular interest due to the possible implication that ancient marine metal availabilities have significantly constrained nitrogenase evolution over geologic time. Here, we reconstructed the evolutionary history of nitrogenases, and combined phylogenetic reconstruction, ancestral sequence inference, and structural homology modeling to evaluate the potential metal dependence of ancient nitrogenases. We find that active‐site sequence features can reliably distinguish extant Mo‐nitrogenases from V‐ and Fe‐nitrogenases and that inferred ancestral sequences at the deepest nodes of the phylogeny suggest these ancient proteins most resemble modern Mo‐nitrogenases. Taxa representing early‐branching nitrogenase lineages lack one or more biosyntheticnifEandnifNgenes that both contribute to the assembly of the FeMo‐cofactor in studied organisms, suggesting that early Mo‐nitrogenases may have utilized an alternate and/or simplified pathway for cofactor biosynthesis. Our results underscore the profound impacts that protein‐level innovations likely had on shaping global biogeochemical cycles throughout the Precambrian, in contrast to organism‐level innovations that characterize the Phanerozoic Eon.

     
    more » « less
  4. Norwick, Katja (Ed.)
    Abstract In plants, miRNA production is orchestrated by a suite of proteins that control transcription of the pri-miRNA gene, post-transcriptional processing and nuclear export of the mature miRNA. Post-transcriptional processing of miRNAs is controlled by a pair of physically interacting proteins, hyponastic leaves 1 (HYL1) and Dicer-like 1 (DCL1). However, the evolutionary history and structural basis of the HYL1–DCL1 interaction is unknown. Here we use ancestral sequence reconstruction and functional characterization of ancestral HYL1 in vitro and in Arabidopsis thaliana to better understand the origin and evolution of the HYL1–DCL1 interaction and its impact on miRNA production and plant development. We found the ancestral plant HYL1 evolved high affinity for both double-stranded RNA (dsRNA) and its DCL1 partner before the divergence of mosses from seed plants (∼500 Ma), and these high-affinity interactions remained largely conserved throughout plant evolutionary history. Structural modeling and molecular binding experiments suggest that the second of two dsRNA-binding motifs (DSRMs) in HYL1 may interact tightly with the first of two C-terminal DCL1 DSRMs to mediate the HYL1–DCL1 physical interaction necessary for efficient miRNA production. Transgenic expression of the nearly 200 Ma-old ancestral flowering-plant HYL1 in A. thaliana was sufficient to rescue many key aspects of plant development disrupted by HYL1− knockout and restored near-native miRNA production, suggesting that the functional partnership of HYL1–DCL1 originated very early in and was strongly conserved throughout the evolutionary history of terrestrial plants. Overall, our results are consistent with a model in which miRNA-based gene regulation evolved as part of a conserved plant “developmental toolkit.” 
    more » « less
  5. Abstract

    The recent breakthroughs in structure prediction, where methods such as AlphaFold demonstrated near‐atomic accuracy, herald a paradigm shift in structural biology. The 200 million high‐accuracy models released in the AlphaFold Database are expected to guide protein science in the coming decades. Partitioning these AlphaFold models into domains and assigning them to an evolutionary hierarchy provide an efficient way to gain functional insights into proteins. However, classifying such a large number of predicted structures challenges the infrastructure of current structure classifications, including our Evolutionary Classification of protein Domains (ECOD). Better computational tools are urgently needed to parse and classify domains from AlphaFold models automatically. Here we present a Domain Parser for AlphaFold Models (DPAM) that can automatically recognize globular domains from these models based on inter‐residue distances in 3D structures, predicted aligned errors, and ECOD domains found by sequence (HHsuite) and structural (Dali) similarity searches. Based on a benchmark of 18,759 AlphaFold models, we demonstrate that DPAM can recognize 98.8% of domains and assign correct boundaries for 87.5%, significantly outperforming structure‐based domain parsers and homology‐based domain assignment using ECOD domains found by HHsuite or Dali. Application of DPAM to the massive AlphaFold models will enable efficient classification of domains, providing evolutionary contexts and facilitating functional studies.

     
    more » « less