skip to main content


Title: Buckling without bending morphogenesis: nonlinearities, spatial confinement, and branching hierarchies
Abstract During morphogenesis, a featureless convex cerebellum develops folds. As it does so, the cortex thickness is thinnest at the crest (gyri) and thickest at the trough (sulci) of the folds. This observation cannot be simply explained by elastic theories of buckling. A recent minimal model explained this phenomenon by modeling the developing cortex as a growing fluid under the constraints of radially spanning elastic fibers, a plia membrane and a nongrowing sub-cortex (Engstrom et al 2019 Phys. Rev. X 8 041053). In this minimal buckling without bending morphogenesis (BWBM) model, the elastic fibers were assumed to act linearly with strain. Here, we explore how nonlinear elasticity influences shape development within BWBM. The nonlinear elasticity generates a quadratic nonlinearity in the differential equation governing the system’s shape and leads to sharper troughs and wider crests, which is an identifying characteristic of cerebellar folds at later stages in development. As developing organs are typically not in isolation, we also explore the effects of steric confinement, and observe flattening of the crests. Finally, as a paradigmatic example, we propose a hierarchical version of BWBM from which a novel mechanism of branching morphogenesis naturally emerges to qualitatively predict later stages of the morphology of the developing cerebellum.  more » « less
Award ID(s):
1832002
NSF-PAR ID:
10339456
Author(s) / Creator(s):
;
Date Published:
Journal Name:
New Journal of Physics
Volume:
23
Issue:
6
ISSN:
1367-2630
Page Range / eLocation ID:
063060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brain organoids recapitulate a number of brain properties, including neuronal diversity. However, do they recapitulate brain structure? Using a hydrodynamic description for cell nuclei as particles interacting initially via an effective , attractive force as mediated by the respective, surrounding cytoskeletons, we quantify structure development in brain organoids to determine what physical mechanism regulates the number of cortex-core structures. Regions of cell nuclei overdensity in the linear regime drive the initial seeding for cortex-core structures, which ultimately develop in the non-linear regime, as inferred by the emergent form of an effective interaction between cell nuclei and with the extracellular environment. Individual cortex-core structures then provide a basis upon which we build an extended version of the buckling without bending morphogenesis (BWBM) model, with its proliferating cortex and constraining core, to predict foliations/folds of the cortex in the presence of a nonlinearity due to cortical cells actively regulating strain. In doing so, we obtain asymmetric foliations/folds with respect to the trough (sulci) and the crest (gyri). In addition to laying new groundwork for the design of more familiar and less familiar brain structures, the hydrodynamic description for cell nuclei during the initial stages of brain organoid development provides an intriguing quantitative connection with large-scale structure formation in the universe. 
    more » « less
  2. Although thin films are typically manufactured in planar sheets or rolls, they are often forced into three-dimensional (3D) shapes, producing a plethora of structures across multiple length scales. To understand this complex response, previous studies have either focused on the overall gross shape or the small-scale buckling that decorates it. A geometric model, which considers the sheet as inextensible yet free to compress, has been shown to capture the gross shape of the sheet. However, the precise meaning of such predictions, and how the gross shape constrains the fine features, remains unclear. Here, we study a thin-membraned balloon as a prototypical system that involves a doubly curved gross shape with large amplitude undulations. By probing its side profiles and horizontal cross-sections, we discover that the mean behavior of the film is the physical observable that is predicted by the geometric model, even when the buckled structures atop it are large. We then propose a minimal model for the horizontal cross-sections of the balloon, as independent elastic filaments subjected to an effective pinning potential around the mean shape. Despite the simplicity of our model, it reproduces a broad range of phenomena seen in the experiments, from how the morphology changes with pressure to the detailed shape of the wrinkles and folds. Our results establish a route to combine global and local features consistently over an enclosed surface, which could aid the design of inflatable structures, or provide insight into biological patterns. 
    more » « less
  3. Self-folding origami, structures that are engineered flat to fold into targeted, three-dimensional shapes, have many potential engineering applications. Though significant effort in recent years has been devoted to designing fold patterns that can achieve a variety of target shapes, recent work has also made clear that many origami structures exhibit multiple folding pathways, with a proliferation of geometric folding pathways as the origami structure becomes complex. The competition between these pathways can lead to structures that are programmed for one shape, yet fold incorrectly. To disentangle the features that lead to misfolding, we introduce a model of self-folding origami that accounts for the finite stretching rigidity of the origami faces and allows the computation of energy landscapes that lead to misfolding. We find that, in addition to the geometrical features of the origami, the finite elasticity of the nearly-flat origami configurations regulates the proliferation of potential misfolded states through a series of saddle-node bifurcations. We apply our model to one of the most common origami motifs, the symmetric “bird's foot,” a single vertex with four folds. We show that though even a small error in programmed fold angles induces metastability in rigid origami, elasticity allows one to tune resilience to misfolding. In a more complex design, the “Randlett flapping bird,” which has thousands of potential competing states, we further show that the number of actual observed minima is strongly determined by the structure's elasticity. In general, we show that elastic origami with both stiffer folds and less bendable faces self-folds better. 
    more » « less
  4. Abstract

    A simple equation modelling an inextensible elastic lining of an inner-lined tube subject to an imposed pressure difference is derived from a consideration of the idealised elastic properties of the lining and the pressure and soft-substrate forces. Two cases are considered in detail, one with prominent wrinkling and a second one in which wrinkling is absent and only buckling remains. Bifurcation diagrams are computed via numerical continuation for both cases. Wrinkling, buckling, folding, and mixed-mode solutions are found and organised according to system-response measures including tension, in-plane compression, maximum curvature and energy. Approximate wrinkle solutions are constructed using weakly nonlinear theory, in excellent agreement with numerics. Our approach explains how the wavelength of the wrinkles is selected as a function of the parameters in compressed wrinkling systems and shows how localised folds and mixed-mode states form in secondary bifurcations from wrinkled states. Our model aims to capture the wrinkling response of arterial endothelium to blood pressure changes but applies much more broadly.

     
    more » « less
  5. Abstract

    The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.

     
    more » « less