skip to main content


Title: Functional hybrid factor regression model for handling heterogeneity in imaging studies
Summary This paper develops a functional hybrid factor regression modelling framework to handle the heterogeneity of many large-scale imaging studies, such as the Alzheimer’s disease neuroimaging initiative study. Despite the numerous successes of those imaging studies, such heterogeneity may be caused by the differences in study environment, population, design, protocols or other hidden factors, and it has posed major challenges in integrative analysis of imaging data collected from multicentres or multistudies. We propose both estimation and inference procedures for estimating unknown parameters and detecting unknown factors under our new model. The asymptotic properties of both estimation and inference procedures are systematically investigated. The finite-sample performance of our proposed procedures is assessed by using Monte Carlo simulations and a real data example on hippocampal surface data from the Alzheimer’s disease study.  more » « less
Award ID(s):
1953087
NSF-PAR ID:
10339565
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biometrika
ISSN:
0006-3444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-scale imaging studies often face challenges stemming from heterogeneity arising from differences in geographic location, instrumental setups, image acquisition protocols, study design, and latent variables that remain undisclosed. While numerous regression models have been developed to elucidate the interplay between imaging responses and relevant covariates, limited attention has been devoted to cases where the imaging responses pertain to the domain of shape. This adds complexity to the problem of imaging heterogeneity, primarily due to the unique properties inherent to shape representations, including nonlinearity, high-dimensionality, and the intricacies of quotient space geometry. To tackle this intricate issue, we propose a novel approach: a shape-on-scalar regression model that incorporates confounder adjustment. In particular, we leverage the square root velocity function to extract elastic shape representations which are embedded within the linear Hilbert space of square integrable functions. Subsequently, we introduce a shape regression model aimed at characterizing the intricate relationship between elastic shapes and covariates of interest, all while effectively managing the challenges posed by imaging heterogeneity. We develop comprehensive procedures for estimating and making inferences about the unknown model parameters. Through real-data analysis, our method demonstrates its superiority in terms of estimation accuracy when compared to existing approaches.

     
    more » « less
  2. Abstract Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder and the most common type of dementia. AD is characterized by a decline of cognitive function and brain atrophy, and is highly heritable with estimated heritability ranging from 60 to 80 $$\%$$ % . The most straightforward and widely used strategy to identify AD genetic basis is to perform genome-wide association study (GWAS) of the case-control diagnostic status. These GWAS studies have identified over 50 AD related susceptibility loci. Recently, imaging genetics has emerged as a new field where brain imaging measures are studied as quantitative traits to detect genetic factors. Given that many imaging genetics studies did not involve the diagnostic outcome in the analysis, the identified imaging or genetic markers may not be related or specific to the disease outcome. Results We propose a novel method to identify disease-related genetic variants enriched by imaging endophenotypes, which are the imaging traits associated with both genetic factors and disease status. Our analysis consists of three steps: (1) map the effects of a genetic variant (e.g., single nucleotide polymorphism or SNP) onto imaging traits across the brain using a linear regression model, (2) map the effects of a diagnosis phenotype onto imaging traits across the brain using a linear regression model, and (3) detect SNP-diagnosis association via correlating the SNP effects with the diagnostic effects on the brain-wide imaging traits. We demonstrate the promise of our approach by applying it to the Alzheimer’s Disease Neuroimaging Initiative database. Among 54 AD related susceptibility loci reported in prior large-scale AD GWAS, our approach identifies 41 of those from a much smaller study cohort while the standard association approaches identify only two of those. Clearly, the proposed imaging endophenotype enriched approach can reveal promising AD genetic variants undetectable using the traditional method. Conclusion We have proposed a novel method to identify AD genetic variants enriched by brain-wide imaging endophenotypes. This approach can not only boost detection power, but also reveal interesting biological pathways from genetic determinants to intermediate brain traits and to phenotypic AD outcomes. 
    more » « less
  3. Summary

    We study the regression relationship between covariates in case–control data: an area known as the secondary analysis of case–control studies. The context is such that only the form of the regression mean is specified, so that we allow an arbitrary regression error distribution, which can depend on the covariates and thus can be heteroscedastic. Under mild regularity conditions we establish the theoretical identifiability of such models. Previous work in this context has either specified a fully parametric distribution for the regression errors, specified a homoscedastic distribution for the regression errors, has specified the rate of disease in the population (we refer to this as the true population) or has made a rare disease approximation. We construct a class of semiparametric estimation procedures that rely on none of these. The estimators differ from the usual semiparametric estimators in that they draw conclusions about the true population, while technically operating in a hypothetical superpopulation. We also construct estimators with a unique feature, in that they are robust against the misspecification of the regression error distribution in terms of variance structure, whereas all other non-parametric effects are estimated despite the biased samples. We establish the asymptotic properties of the estimators and illustrate their finite sample performance through simulation studies, as well as through an empirical example on the relationship between red meat consumption and hetero-cyclic amines. Our analysis verified the positive relationship between red meat consumption and two forms of hetro-cyclic amines, indicating that increased red meat consumption leads to increased levels of MeIQx and PhIP, both being risk factors for colorectal cancer. Computer software as well as data to illustrate the methodology are available from http://www.stat.tamu.edu/~carroll/matlab__programs/software.php .

     
    more » « less
  4. Noisy matrix completion aims at estimating a low-rank matrix given only partial and corrupted entries. Despite remarkable progress in designing efficient estimation algorithms, it remains largely unclear how to assess the uncertainty of the obtained estimates and how to perform efficient statistical inference on the unknown matrix (e.g., constructing a valid and short confidence interval for an unseen entry). This paper takes a substantial step toward addressing such tasks. We develop a simple procedure to compensate for the bias of the widely used convex and nonconvex estimators. The resulting debiased estimators admit nearly precise nonasymptotic distributional characterizations, which in turn enable optimal construction of confidence intervals/regions for, say, the missing entries and the low-rank factors. Our inferential procedures do not require sample splitting, thus avoiding unnecessary loss of data efficiency. As a byproduct, we obtain a sharp characterization of the estimation accuracy of our debiased estimators in both rate and constant. Our debiased estimators are tractable algorithms that provably achieve full statistical efficiency. 
    more » « less
  5. Abstract Background Large-scale genome-wide association studies have successfully identified many genetic variants significantly associated with Alzheimer’s disease (AD), such as rs429358, rs11038106, rs723804, rs13591776, and more. The next key step is to understand the function of these SNPs and the downstream biology through which they exert the effect on the development of AD. However, this remains a challenging task due to the tissue-specific nature of transcriptomic and proteomic data and the limited availability of brain tissue.In this paper, instead of using coupled transcriptomic data, we performed an integrative analysis of existing GWAS findings and expression quantitative trait loci (eQTL) results from AD-related brain regions to estimate the transcriptomic alterations in AD brain. Results We used summary-based mendelian randomization method along with heterogeneity in dependent instruments method and were able to identify 32 genes with potential altered levels in temporal cortex region. Among these, 10 of them were further validated using real gene expression data collected from temporal cortex region, and 19 SNPs from NECTIN and TOMM40 genes were found associated with multiple temporal cortex imaging phenotype. Conclusion Significant pathways from enriched gene networks included neutrophil degranulation, Cell surface interactions at the vascular wall, and Regulation of TP53 activity which are still relatively under explored in Alzheimer’s Disease while also encouraging a necessity to bind further trans-eQTL effects into this integrative analysis. 
    more » « less