skip to main content


Title: Spatio-temporal variation in the zooplankton prey of lesser sandeels: species and community trait patterns from the Continuous Plankton Recorder
Abstract The phenology, distribution, and size composition of plankton communities are changing rapidly in response to warming. This may lead to shifts in the prey fields of planktivorous fish, which play a key role in transferring energy up marine food chains. Here, we use 60 + years of Continuous Plankton Recorder data to explore temporal trends in key taxa and community traits in the prey field of planktivorous lesser sandeels (Ammodytes marinus) in the North Sea, the Faroes and southern Iceland. We found marked spatial variation in the prey field, with Calanus copepods generally being much more common in the northern part of the study area. In the western North Sea, the estimated amount of available energy in the prey field has decreased by more than 50% since the 1960s. This decrease was accompanied by declining abundances of small copepods, and shifts in the timing of peak annual prey abundances. Further, the estimated average prey community body size has increased in several of the locations considered. Overall, our results point to the importance of regional studies of prey fields, and caution against inferring ecological consequences based only on large-scale trends in key taxa or mean community traits.  more » « less
Award ID(s):
1657887
NSF-PAR ID:
10339691
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Dolgov, Andrey
Date Published:
Journal Name:
ICES Journal of Marine Science
Volume:
79
Issue:
5
ISSN:
1054-3139
Page Range / eLocation ID:
1649 to 1661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    The frequency of different body sizes in an ecological community (the individual size distribution, or ISD) is a key link between the number of individual organisms present in a community and community function—total biomass or total energy use. If the ISD changes over time, the dynamics of community function may become decoupled from trends in abundance. Understanding how, and how often, the ISD modulates the relationship between abundance, biomass and energy use is of critical importance to understand biodiversity trends in the Anthropocene. Here, we conduct the first macroecological‐scale analysis of this type for avian communities.

    Location

    North America, north of Mexico.

    Time Period

    1989–2018.

    Major Taxa Studied

    Breeding birds.

    Methods

    We used species' traits to generate annual ISDs for bird communities in the North American Breeding Bird Survey. We compared the long‐term trends in total biomass and energy use to the trends generated from a null model of an unchanging ISD.

    Results

    Trends in biomass have been evenly split between increases and decreases, but the trends predicted by the null model were dominated by decreases. A substantial number of communities have undergone a shift in the ISD favouring larger bodied species, resulting in a less negative trend in biomass than would be expected had the ISD remained static. Trends in energy use more closely paralleled the null model.

    Main Conclusions

    Taking changes in the ISD into account qualitatively changes the continental‐scale picture of how biomass and energy use have changed over the past 30 years. For North American breeding birds, shifts in species composition favouring larger bodied species may have partially offset declines in standing biomass driven by losses of individuals over the past 30 years.

     
    more » « less
  2. Abstract

    During the 1980s, the North Sea plankton community underwent a well‐documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic‐level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic‐level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty‐three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony inSSTand plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony ofCalanus helgolandicusandPara‐pseudocalanusspp appeared to be driven by changes inSSTsynchrony. This study is one of few to document alterations of synchrony and climate‐change impacts on synchrony. We discuss why climate‐change impacts on synchrony may well be more common and consequential than previously recognized.

     
    more » « less
  3. Abstract

    Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.

     
    more » « less
  4. Abstract

    Mixotrophic plankton can comprise a substantial portion of the plankton community compared to phytoplankton and zooplankton. However, there is a gap in the understanding of conditions that influence mixotroph prevalence and activity in situ because current methods often over- or underestimate mixotroph abundance. A labeled prey-tracer method was utilized to identify active mixotrophs present at two locations in a temperate estuary over a year. The tracer method was combined with light microscopy data to estimate active mixotroph abundance and proportion. This study estimated that actively grazing mixotrophic taxa were more abundant in the spring and autumn compared to summer. Dinoflagellates typically dominated the mixotrophic taxa except during autumn at the low salinity location when cryptophytes dominated. Further analysis suggested that active mixotroph abundances might not be only regulated by environmental conditions favorable to mixotrophy but, instead, environmental conditions favorable to different mixotrophs utilization of phagotrophy. By focusing on mixotrophic taxa that were identified to be actively grazing at time of sampling, this study provided a more nuanced estimation of mixotroph abundance, increasing the understanding of how mixotrophic abundance and proportion in situ are influenced by the planktonic community composition and environmental factors.

     
    more » « less
  5. Abstract

    Predators can strongly affect prey communities, but their influence may be difficult to distinguish from bottom‐up and other environmental effects. The problem of assessing predator impact is especially difficult in large systems that do not allow for comparisons across multiple units (e.g., small lakes) that have varying predator density. For instance, the invasion of the predatory zooplankter,Bythotrephes longimanus, into the Laurentian Great Lakes contributed to the nearly complete disappearance of several zooplankton species, but current effects on extant zooplankton are not well understood. We used generalized additive models (GAMs) applied to long‐term data time series (1994–2012) to examineB. longimanuseffects on zooplankton species in Lake Michigan. BecauseB. longimanusabundance varied over time, our approach allowed assessment of predator effects from field data while accounting for other factors, including food resources, temperature, and seasonality. Results suggest thatB. longimanussubstantially reduces some zooplankton population growth rates, with the largest effects on species thatB. longimanusaffected more strongly in experiments. For example, at maximumB. longimanusabundance,Daphnia mendotae,Bosmina longirostris, andDiacyclops thomasipopulation growth rates were estimated to be reduced by 17%, 30%, and 21%, respectively, compared to no effect on calanoid copepods. Results further indicated positive temperature effects on population growth that differed by species. Our study thus provides field‐based evidence for ongoing impacts of invasive species and temperature on zooplankton production and composition, with potential consequences for planktivorous fish, and exemplifies how GAMs can be used to determine predator effects from time series data.

     
    more » « less