skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long‐term patterns in ecosystem phenology near Palmer Station, Antarctica, from the perspective of the Adélie penguin
Abstract Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.  more » « less
Award ID(s):
2026045 2012365 2224611 1846837
PAR ID:
10396493
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
14
Issue:
2
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  2. Abstract We conducted the first assessment of Adélie Penguin (Pygoscelis adeliae) chick survival that accounts for imperfect resighting. We found that when chicks are larger in size when they enter the crèche stage (the period when both parents forage at the same time and chicks are left relatively unprotected), they have a higher probability of survival to fledging. We investigated the relationships between growth, crèche timing, and chick survival during one typical year and one year of reduced food availability. Chicks that hatched earlier in the season entered the crèche stage older, and chicks that both grew faster and crèched older entered the crèche at a larger size. These relationships were stronger in the year of reduced food availability. Thus, parents increased their chicks’ chance of fledging if they provided sufficient food for faster growth rates and/or extended the length of the brood-guarding period. Early nest initiation (i.e., early hatching) provided parents with the opportunity to extend the guard period and increase chick survival. However, to extend the guard stage successfully, they must provide larger meals and maintain higher chick growth rates, even if just one parent at a time is foraging, which previous work has shown is not possible for all individuals. We show that the factors governing tradeoffs in chick-rearing behavior of Adélie Penguin parents may vary in accord with environmental conditions, a result from which we can better understand species’ adaptations to environmental changes. 
    more » « less
  3. Abstract The phenology of critical biological events in aquatic ecosystems is rapidly shifting due to climate change. Growing variability in phenological cues can increase the likelihood of trophic mismatches (i.e., mismatches in the timing of peak prey and predator abundances), causing recruitment failures in important fisheries. We assessed changes in the spawning phenology of walleye (Sander vitreus) in 194 Midwest US lakes to investigate factors influencing walleye phenological responses to climate change and associated climate variability, including ice‐off timing, lake physical characteristics, and population stocking history. Ice‐off phenology shifted earlier, about three times faster than walleye spawning phenology over time. Spawning phenology deviations from historic averages increased in magnitude over time, and large deviations were associated with poor offspring survival. Our results foreshadow the risks of increasingly frequent natural recruitment failures due to mismatches between historically tightly coupled spawning and ice‐off phenology. 
    more » « less
  4. Abstract ContextThe interaction between topography and wind influences snow cover patterns, which can determine the distribution of species reliant on snow-free habitats. Past studies suggest snow accumulation creates suboptimal breeding habitats for Adélie penguins, leading to colony extinctions. However, evidence linking snow cover to landscape features is lacking. ObjectivesWe aimed to model landscape-driven snow cover patterns, identify long-term weather changes, and determine the impact of geomorphology and snow conditions on penguin colony persistence. MethodsWe combined remotely sensed imagery, digital surface models, and > 30 years of weather data with penguin population monitoring from 1975 to 2022 near Palmer Station, west Antarctic Peninsula. Using a multi-model approach, we identified landscape factors driving snow distribution on two islands. Historic and current penguin sub-colony perimeters were used to understand habitat selection, optimal habitat features, and factors associated with extinctions. ResultsDecadal and long-term trends in wind and snow conditions were detected. Snow accumulated on lower elevations and south-facing slopes driven by the north-northeasterly winds while Adélie penguins occupied higher elevations and more north-facing slopes. On Torgersen Island, sub-colonies on south aspects have gone extinct, and only five of the 23 historic sub-colonies remain active, containing 7% of the 1975 population. Adélie penguins will likely be extinct on this island in < 25 years. ConclusionsAdélie penguin populations are in decline throughout the west Antarctic Peninsula with multiple climate and human impacts likely driving Adélie penguins towards extinction in this region. We demonstrate precipitation has detrimental effects on penguins, an often overlooked yet crucial factor for bird studies. 
    more » « less
  5. Abstract The Ross Sea (Antarctica) is one of the most productive marine ecosystems in the Southern Ocean and supports nearly one million breeding pairs of Adélie penguins (Pygoscelis adeliae) annually. There also is a well-preserved record of abandoned penguin colonies that date from before the Last Glacial Maximum (>45,000 14C yr B.P.) through the Holocene. Cape Irizar is a rocky cape located just south of the Drygalski Ice Tongue on the Scott Coast. In January 2016, several abandoned Adélie penguin sites and abundant surface remains of penguin bones, feathers, and carcasses that appeared to be fresh were being exposed by melting snow and were sampled for radiocarbon analysis. The results indicate the “fresh” remains are actually ancient and that three periods of occupation by Adélie penguins are represented beginning ca. 5000 calibrated calendar (cal.) yr B.P., with the last occupation ending by ca. 800 cal. yr B.P. The presence of fresh-appearing remains on the surface that are actually ancient in age suggests that only recently has snowmelt exposed previously frozen carcasses and other remains for the first time in ∼800 yr, allowing them to decay and appear fresh. Recent warming trends and historical satellite imagery (Landsat) showing decreasing snow cover on the cape since 2013 support this hypothesis. Increased δ13C values of penguin bone collagen further indicate a period of enhanced marine productivity during the penguin “optimum”, a warm period at 4000–2000 cal. yr B.P., perhaps related to an expansion of the Terra Nova Bay polynya with calving events of the Drygalski Ice Tongue. 
    more » « less