We present O(log logn)round algorithms in the Massively Parallel Computation (MPC) model, with ˜O(n) memory per machine, that compute a maximal independent set, a 1 + ε approximation of maximum matching, and a 2 + ε approximation of minimum vertex cover, for any nvertex graph and any constant ε > 0. These improve the state of the art as follows: • Our MIS algorithm leads to a simple O(log log Δ)round MIS algorithm in the CONGESTEDCLIQUE model of distributed computing, which improves on the ˜O (plog Δ)round algorithm of Ghaffari [PODC’17]. • OurO(log logn)round (1+ε)approximate maximum matching algorithm simplifies or improves on the following prior work: O(log2 logn)round (1 + ε)approximation algorithm of Czumaj et al. [STOC’18] and O(log logn)round (1 + ε) approximation algorithm of Assadi et al. [arXiv’17]. • Our O(log logn)round (2+ε)approximate minimum vertex cover algorithm improves on an O(log logn)round O(1) approximation of Assadi et al. [arXiv’17].
Massively Parallel Algorithms for Distance Approximation and Spanners.
Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing largescale graphs. By now, we have quite fast algorithmsusually sublogarithmictime and often poly(łogłog n)time, or even fasterfor a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widelyadopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an alltoall manner to process largescale data. Contributing to this line of work on MPC graph algorithms, we present poly(łog k) ε poly(łogłog n) round MPC algorithms for computing O(k^1+o(1) )spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmictime MPC algorithms for spanner construction.
As primary applications of our spanners, we get two important implications, as follows: For the MPC setting, we get an O(łog^2łog n)round algorithm for O(łog^1+o(1) n) approximation of all pairs shortest paths (APSP) in the nearlinear regime of local memory. To the best of our knowledge, this is the first sublogarithmictime MPC algorithm for distance approximations. Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sublogarithmic algorithm for more »
 Award ID(s):
 2006664
 Publication Date:
 NSFPAR ID:
 10339759
 Journal Name:
 33rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2021)
 Sponsoring Org:
 National Science Foundation
More Like this


Motivated by the increasing need to understand the distributed algorithmic foundations of largescale graph computations, we study some fundamental graph problems in a messagepassing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many realworld systems. Communication is pointtopoint, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show nontrivial lower bounds on the round complexity of distributed largescale data computations. This result is established via an informationtheoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including nongraph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower boundsmore »

The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)approximation in Õ(n) time or 3.5approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)Convolution conjecture, showing that approxima tions are inevitable in the nearlinear time regime. To complement the lower bound, we provide a 3.3approximation in nearlinear time, improving upon the 25year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first finegrained lower bound for a natural planar graph problem in P. Building on our construction we prove nearquadratic lower bounds under SETHmore »

We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost kcycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4 or 5cycles in a worstcase instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve superconstant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3SUM or APSP conjectures. In particular, we prove that kapproximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4Cycle problem: An infamous open question in finegrained complexity is to establish any surprising consequences from amore »

Counting and uniformly sampling motifs in a graph are fundamental algorithmic tasks with numerous applications across multiple fields. Since these problems are computationally expensive, recent efforts have focused on devising sublineartime algorithms for these problems. We consider the model where the algorithm gets a constant size motif H and query access to a graph G, where the allowed queries are degree, neighbor, and pair queries, as well as uniform edge sample queries. In the sampling task, the algorithm is required to output a uniformly distributed copy of H in G (if one exists), and in the counting task it is required to output a good estimate to the number of copies of H in G. Previous algorithms for the uniform sampling task were based on a decomposition of H into a collection of odd cycles and stars, denoted D∗(H) = {Ok1 , ...,Okq , Sp1 , ..., Spℓ19 }. These algorithms were shown to be optimal for the case where H is a clique or an oddlength cycle, but no other lower bounds were known. We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, for any motif H whose decomposition contains at least twomore »