Abstract PurposeTo examine the effect of incorporating self‐supervised denoising as a pre‐processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K‐space data employed for training are typically multi‐coil and inherently noisy. Although DL‐based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise‐free datasets is impractical. MethodsWe leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL‐based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model‐Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL‐based methods in solving accelerated multi‐coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2‐weighted brain and fat‐suppressed proton‐density knee scans. ResultsWe observed that self‐supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal‐to‐noise ratio (PSNR) across different SNR levels, including 32, 22, and 12 dB for T2‐weighted brain data, and 24, 14, and 4 dB for fat‐suppressed knee data. ConclusionWe showed that denoising is an essential pre‐processing technique capable of improving the efficacy of DL‐based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise‐free reference MRI scans.
more »
« less
Convolutional Neural Network Denoising of Focused Ion Beam Micrographs
Most research on deep learning algorithms for image denoising has focused on signal-independent additive noise. Focused ion beam (FIB) microscopy with direct secondary electron detection has an unusual Neyman Type A (compound Poisson) measurement model, and sample damage poses fundamental challenges in obtaining training data. Model-based estimation is difficult and ineffective because of the nonconvexity of the negative log likelihood. In this paper, we develop deep learning-based denoising methods for FIB micrographs using synthetic training data generated from natural images. To the best of our knowledge, this is the first attempt in the literature to solve this problem with deep learning. Our results show that the proposed methods slightly outperform a total variation-regularized model-based method that requires time-resolved measurements that are not conventionally available. Improvements over methods using conventional measurements and less accurate noise modeling are dramatic - around 10 dB in peak signal-to-noise ratio.
more »
« less
- PAR ID:
- 10339854
- Date Published:
- Journal Name:
- IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time-varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. Experiments on multiple datasets confirm the pivotal role of silent interval detection for speech denoising, and our method outperforms several state-of-the-art denoising methods, including those that accept only audio input (like ours) and those that denoise based on audiovisual input (and hence require more information). We also show that our method enjoys excellent generalization properties, such as denoising spoken languages not seen during training.more » « less
-
Yap, Pew-Thian (Ed.)Diffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue microstructure measurements; however, high b-value DWI images contain high noise levels that can overwhelm the signal of interest and bias microstructural measurements. Here, we propose a simple denoising method that can be applied to any dataset, provided a low-noise, single-subject dataset is acquired using the same DWI sequence. The denoising method uses a one-dimensional convolutional neural network (1D-CNN) and deep learning to learn from a low-noise dataset, voxel-by-voxel. The trained model can then be applied to high-noise datasets from other subjects. We validated the 1D-CNN denoising method by first demonstrating that 1D-CNN denoising resulted in DWI images that were more similar to the noise-free ground truth than comparable denoising methods, e.g., MP-PCA, using simulated DWI data. Using the same DWI acquisition but reconstructed with two common reconstruction methods, i.e. SENSE1 and sum-of-square, to generate a pair of low-noise and high-noise datasets, we then demonstrated that 1D-CNN denoising of high-noise DWI data collected from human subjects showed promising results in three domains: DWI images, diffusion metrics, and tractography. In particular, the denoised images were very similar to a low-noise reference image of that subject, more than the similarity between repeated low-noise images (i.e. computational reproducibility). Finally, we demonstrated the use of the 1D-CNN method in two practical examples to reduce noise from parallel imaging and simultaneous multi-slice acquisition. We conclude that the 1D-CNN denoising method is a simple, effective denoising method for DWI images that overcomes some of the limitations of current state-of-the-art denoising methods, such as the need for a large number of training subjects and the need to account for the rectified noise floor.more » « less
-
Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics are available to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data.more » « less
-
Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics are available to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data.more » « less
An official website of the United States government

