skip to main content


Title: A Systematic Review of Spatial-Temporal Scale Issues in Sociohydrology
Sociohydrology is a recent effort to integrate coupled human-water systems to understand the dynamics and co-evolution of the system in a holistic sense. However, due to the complexity and uncertainty involved in coupled human-water systems, the feedbacks and interactions are inherently difficult to model. Part of this complexity is due to the multi-scale nature across space and time at which different hydrologic and social processes occur and the varying scale at which data is available. This systematic review seeks to comprehensively collect those documents that conduct analysis within the sociohydrology framework to quantify the spatial-temporal scale(s) and the types of variables and datasets that were used. Overall, a majority of sociohydrology studies reviewed were primarily published in hydrological journals and contain more established hydrological, rather than social, models. The spatial extents varied by political and natural boundaries with the most common being cities and watersheds. Temporal extents also varied from event-based to millennial timescales where decadal and yearly were the most common. In addition to this, current limitations of sociohydrology research, notably the absence of an interdisciplinary unity, future directions, and implications for scholars doing sociohydrology are discussed.  more » « less
Award ID(s):
1828571
NSF-PAR ID:
10339906
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Water
Volume:
3
ISSN:
2624-9375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temporal patterns in stream chemistry provide integrated signals describing the hydrological and ecological state of whole catchments. However, stream chemistry integrates multi-scale signals of processes occurring in both the catchment and stream. Deconvoluting these signals could identify mechanisms of solute transport and transformation and provide a basis for monitoring ecosystem change. We applied trend analysis, wavelet decomposition, multivariate autoregressive state-space modeling, and analysis of concentration–discharge relationships to assess temporal patterns in high-frequency (15 min) stream chemistry from permafrost-influenced boreal catchments in Interior Alaska at diel, storm, and seasonal time scales. We compared catchments that varied in spatial extent of permafrost to identify characteristic biogeochemical signals. Catchments with higher spatial extents of permafrost were characterized by increasing nitrate concentration through the thaw season, an abrupt increase in nitrate and fluorescent dissolved organic matter (fDOM) and declining conductivity in late summer, and flushing of nitrate and fDOM during summer rainstorms. In contrast, these patterns were absent, of lower magnitude, or reversed in catchments with lower permafrost extent. Solute dynamics revealed a positive influence of permafrost on fDOM export and the role of shallow, seasonally dynamic flowpaths in delivering solutes from high-permafrost catchments to streams. Lower spatial extent of permafrost resulted in static delivery of nitrate and limited transport of fDOM to streams. Shifts in concentration–discharge relationships and seasonal trends in stream chemistry toward less temporally dynamic patterns might therefore indicate reorganized catchment hydrology and biogeochemistry due to permafrost thaw. 
    more » « less
  2. A robust multi-functional framework for widespread planning of nature-based solutions (NBS) must incorporate components of social equity and hydro-environmental performance in a cost-effective manner. NBS systems address stormwater mitigation by increasing on-site infiltration and evaporation through enhanced greenspace while also improving various components of societal well-being, such as physical health (e.g., heart disease, diabetes), mental health (e.g., post-traumatic stress disorder, depression), and social cohesion. However, current optimization tools for NBS systems rely on stormwater quantity abatement and, to a lesser extent, economic costs and environmental pollutant mitigation. Therefore, the objective of this study is to explore how NBS planning may be improved to maximize hydrological, environmental, and social co-benefits in an unequivocal and equitable manner. Here, a novel equity-based indexing framework is proposed to better understand how we might optimize social and physical functionalities of NBS systems as a function of transdisciplinary characteristics. Specifically, this study explores the spatial tradeoffs associated with NBS allocation by first optimizing a local watershed-scale model according to traditional metrics of stormwater efficacy (e.g., cost efficiency, hydrological runoff reduction, and pollutant load reduction) using SWMM modeling. The statistical dispersion of social health is then identified using the Area Deprivation Index (ADI), which is a high-resolution spatial account of socioeconomic disadvantages that have been linked to adverse health outcomes, according to United States census properties. As NBSs have been shown to mitigate various adverse health conditions through increased urban greening, this improved understanding of geospatial health characteristics may be leveraged to inform an explicit representation of social wellness within NBS planning frameworks. This study presents and demonstrates a novel framework for integrating hydro-environmental modeling, economic efficiency, and social health deprivation using a dimensionless Gini coefficient, which is intended to spur the positive connection of social and physical influences within robust NBS planning. Hydro-environmental risk (according to hydro-dynamic modeling) and social disparity (according to ADI distribution) are combined within a common measurement unit to capture variation across spatial domains and to optimize fair distribution across the study area. A comparison between traditional SWMM-based optimization and the proposed Gini-based framework reveals how the spatial allocation of NBSs within the watershed may be structured to address significantly more areas of social health deprivation while achieving similar hydro-environmental performance and cost-efficiency. The results of a case study for NBS planning in the White Oak Bayou watershed in Houston, Texas, USA revealed runoff volume reductions of 3.45% and 3.38%, pollutant load reductions of 11.15% and 11.28%, and ADI mitigation metrics of 16.84% and 35.32% for the SWMM-based and the Gini-based approaches, respectively, according to similar cost expenditures. As such, the proposed framework enables an analytical approach for balancing the spatial tradeoffs of overlapping human-water goals in NBS planning while maintaining hydro-environmental robustness and economic efficiency. 
    more » « less
  3. Abstract. Multi-temporal measurements quantifying the changes to the Earth's surface are critical for understanding many natural, anthropogenic, and social processes. Researchers typically use remotely sensed Earth observation data to quantify and characterize such changes in land use and land cover (LULC). However, such data sources are limited in their availability prior to the 1980s. While an observational window of 40 to 50 years is sufficient to study most recent LULC changes, processes such as urbanization, land development, and the evolution of urban and coupled nature–human systems often operate over longer time periods covering several decades or even centuries. Thus, to quantify and better understand such processes, alternative historical–geospatial data sources are required that extend farther back in time. However, such data are rare, and processing is labor-intensive, often involving manual work. To overcome the resulting lack in quantitative knowledge of urban systems and the built environment prior to the 1980s, we leverage cadastral data with rich thematic property attribution, such as building usage and construction year. We scraped, harmonized, and processed over 12 000 000 building footprints including construction years to create a multi-faceted series of gridded surfaces, describing the evolution of human settlements in Spain from 1900 to 2020, at 100 m spatial and 5-year temporal resolution. These surfaces include measures of building density, built-up intensity, and built-up land use. We evaluated our data against a variety of data sources including remotely sensed human settlement data and land cover data, model-based historical land use depictions, and historical maps and historical aerial imagery and find high levels of agreement. This new data product, the Historical Settlement Data Compilation for Spain (HISDAC-ES), is publicly available (https://doi.org/10.6084/m9.figshare.22009643, Uhl et al., 2023a) and represents a rich source for quantitative, long-term analyses of the built environment and related processes over large spatial and temporal extents and at fine resolutions.

     
    more » « less
  4. Abstract. Watersheds are the fundamental Earth surface functioning units that connect the land to aquatic systems. Many watershed-scale models represent hydrological processes but not biogeochemical reactive transport processes. This has limited our capability to understand and predict solute export, water chemistry and quality, and Earth system response to changing climate and anthropogenic conditions. Here we present a recently developed BioRT-Flux-PIHM (BioRT hereafter) v1.0, a watershed-scale biogeochemical reactive transport model. The model augments the previously developed RT-Flux-PIHM that integrates land-surface interactions, surface hydrology, and abiotic geochemical reactions. It enables the simulation of (1) shallow and deep-water partitioning to represent surface runoff, shallow soil water, and deeper groundwater and of (2) biotic processes including plant uptake, soil respiration, and nutrient transformation. The reactive transport part of the code has been verified against the widely used reactive transport code CrunchTope. BioRT-Flux-PIHM v1.0 has recently been applied in multiple watersheds under diverse climate, vegetation, and geological conditions. This paper briefly introduces the governing equations and model structure with a focus on new aspects of the model. It also showcases one hydrology example that simulates shallow and deep-water interactions and two biogeochemical examples relevant to nitrate and dissolved organic carbon (DOC). These examples are illustrated in two simulation modes of complexity. One is the spatially lumped mode (i.e., two land cells connected by one river segment) that focuses on processes and average behavior of a watershed. Another is the spatially distributed mode (i.e., hundreds of cells) that includes details of topography, land cover, and soil properties. Whereas the spatially lumped mode represents averaged properties and processes and temporal variations, the spatially distributed mode can be used to understand the impacts of spatial structure and identify hot spots of biogeochemical reactions. The model can be used to mechanistically understand coupled hydrological and biogeochemical processes under gradients of climate, vegetation, geology, and land use conditions. 
    more » « less
  5. null (Ed.)
    The nexus of food, energy, and water systems (FEWS) has become a salient research topic, as well as a pressing societal and policy challenge. Computational modeling is a key tool in addressing these challenges, and FEWS modeling as a subfield is now established. However, social dimensions of FEWS nexus issues, such as individual or social learning, technology adoption decisions, and adaptive behaviors, remain relatively underdeveloped in FEWS modeling and research. Agent-based models (ABMs) have received increasing usage recently in efforts to better represent and integrate human behavior into FEWS research. A systematic review identified 29 articles in which at least two food, energy, or water sectors were explicitly considered with an ABM and/or ABM-coupled modeling approach. Agent decision-making and behavior ranged from reactive to active, motivated by primarily economic objectives to multi-criteria in nature, and implemented with individual-based to highly aggregated entities. However, a significant proportion of models did not contain agent interactions, or did not base agent decision-making on existing behavioral theories. Model design choices imposed by data limitations, structural requirements for coupling with other simulation models, or spatial and/or temporal scales of application resulted in agent representations lacking explicit decision-making processes or social interactions. In contrast, several methodological innovations were also noted, which were catalyzed by the challenges associated with developing multi-scale, cross-sector models. Several avenues for future research with ABMs in FEWS research are suggested based on these findings. The reviewed ABM applications represent progress, yet many opportunities for more behaviorally rich agent-based modeling in the FEWS context remain. 
    more » « less