skip to main content


Title: Autonomous Racing with Multiple Vehicles using a Parallelized Optimization with Safety Guarantee using Control Barrier Functions
Award ID(s):
1931853
NSF-PAR ID:
10340150
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
3444 to 3451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tibiofemoral compression forces present during locomotion can result in high stress and risk damage to the knee. Powered assistance using a knee exoskeleton may reduce the knee load by reducing the work required by the muscles. However, the exact effect of assistance on the tibiofemoral force is unknown. The goal of this study was to investigate the effect of knee extension assistance during the early stance phase on the tibiofemoral force. Nine able-bodied adults walked on an inclined treadmill with a bilateral knee exoskeleton with assistance and with no assistance. Using an EMG-informed neuromusculoskeletal model, muscle forces were estimated, then utilized to estimate the tibiofemoral contact force. Results showed a 28% reduction in the knee moment, which resulted in approximately a 15% decrease in knee extensor muscle activation and a 20% reduction in subsequent muscle force, leading to a significant 10% reduction in peak and 9% reduction in average tibiofemoral contact force during the early stance phase (p < 0.05). The results indicate the tibiofemoral force is highly dependent on the knee kinetics and quadricep muscle activation due to their influence on knee extensor muscle forces, the primary contributor to the knee load. 
    more » « less
  2. Ultrawideband (UWB) radar sensors are an emerging biosensing modality that can be used to assess the dielectric properties of internal tissues. Antenna effects, including antenna body interactions limit the sensors ability to isolate the weak returns from the internal tissues. In this paper we develop a data driven calibration method for recovering Green’s function of the multilayered media model of the tissue profiles using an Invertible Neural Network (INN). The proposed INN structure is trained to invert the antenna transfer function to form estimates of the Green’s function modeling returns from internal tissues. We use simulation experiments to assess the effectiveness of the trained INN in antenna transfer function inversion. 
    more » « less