skip to main content


Title: 1-GHz mid-infrared frequency comb spanning 3 to 13 μm
Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 {\mu}m. This frequency comb is based on a commercially available 1.56 {\mu}m mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses in \c{hi}(2) nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with {\mu}s time resolution, 1 GHz (0.03 cm-1) spectral point spacing and a full bandwidth of >5 THz (>166 cm-1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources.  more » « less
Award ID(s):
2016244
NSF-PAR ID:
10340303
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 µm. This frequency comb is based on a commercially available 1.56 µm mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses inχ(2)nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with μs time resolution, 1 GHz (0.03 cm−1) spectral point spacing and a full bandwidth of >5 THz (>166 cm−1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources.

     
    more » « less
  2. This New Views article will highlight some recent advances in high sensitivity gas detection using direct infrared absorption frequency comb laser spectroscopy, with a focus on frequency comb use in chemical reaction kinetics and our own contribution to this field. Our recently implemented detection technique uses a combination of a 12.9 GHz free spectral range virtually imaged phased array and diffraction grating to spatially disperse the mid-infrared frequency comb onto a camera. Individual frequencies or ‘comb teeth’ of a 250 MHz repetition-rate frequency comb are able to be resolved. High molecular sensitivity is achieved by increasing the interaction path length using a Herriott multipass cell. High spectral resolution, broadband spectral coverage, and high molecular sensitivity are all achieved on an adjustable 1–50 µs timescale, making this frequency comb apparatus ideal for measuring chemical reaction kinetics where multiple absorbing species can be monitored simultaneously. This New Views article will also discuss some of the challenges and decisions that chemists might face in implementing this advanced physics technology in their own laboratory. Spatially dispersed 250 MHz mid-infrared frequency comb laser, with absorption of some frequencies by a dilute sample of methane. KEYWORDS: Frequency combs, chemical kinetics, trace gas detection 
    more » « less
  3. Precision laser spectroscopy is key to many developments in atomic and molecular physics and the advancement of related technologies such as atomic clocks and sensors. However, in important spectroscopic scenarios, such as astronomy and remote sensing, the light is of thermal origin, and interferometric or diffractive spectrometers typically replace laser spectroscopy. In this work, we employ laser-based heterodyne radiometry to measure incoherent light sources in the near-infrared and introduce techniques for absolute frequency calibration with a laser frequency comb. Measuring the solar continuum, we obtain a signal-to-noise ratio that matches the fundamental quantum-limited prediction given by the thermal photon distribution and our system’s efficiency, bandwidth, and averaging time. With resolving powerR∼<#comment/>106, we determine the center frequency of an iron line in the solar spectrum to sub-MHz absolute frequency uncertainty in under 10 min, a fractional precision 1/4000 the linewidth. Additionally, we propose concepts that take advantage of refractive beam shaping to decrease the effects of pointing instabilities by100×<#comment/>, and of frequency comb multiplexing to increase data acquisition rates and spectral bandwidths by comparable factors. Taken together, our work brings the power of telecommunications photonics and the precision of frequency comb metrology to laser heterodyne radiometry, with implications for solar and astronomical spectroscopy, remote sensing, and precise Doppler velocimetry.

     
    more » « less
  4. Abstract

    Dual-comb spectroscopy has been proven beneficial in molecular characterization but remains challenging in the mid-infrared region due to difficulties in sources and efficient photodetection. Here we introduce cross-comb spectroscopy, in which a mid-infrared comb is upconverted via sum-frequency generation with a near-infrared comb of a shifted repetition rate and then interfered with a spectral extension of the near-infrared comb. We measure CO2absorption around 4.25 µm with a 1-µm photodetector, exhibiting a 233-cm−1instantaneous bandwidth, 28000 comb lines, a single-shot signal-to-noise ratio of 167 and a figure of merit of 2.4 × 106Hz1/2. We show that cross-comb spectroscopy can have superior signal-to-noise ratio, sensitivity, dynamic range, and detection efficiency compared to other dual-comb-based methods and mitigate the limits of the excitation background and detector saturation. This approach offers an adaptable and powerful spectroscopic method outside the well-developed near-IR region and opens new avenues to high-performance frequency-comb-based sensing with wavelength flexibility.

     
    more » « less
  5. Abstract

    Frequency modulated continuous wave laser ranging (FMCW LiDAR) enables distance mapping with simultaneous position and velocity information, is immune to stray light, can achieve long range, operate in the eye-safe region of 1550 nm and achieve high sensitivity. Despite its advantages, it is compounded by the simultaneous requirement of both narrow linewidth low noise lasers that can be precisely chirped. While integrated silicon-based lasers, compatible with wafer scale manufacturing in large volumes at low cost, have experienced major advances and are now employed on a commercial scale in data centers, and impressive progress has led to integrated lasers with (ultra) narrow sub-100 Hz-level intrinsic linewidth based on optical feedback from photonic circuits, these lasers presently lack fast nonthermal tuning, i.e. frequency agility as required for coherent ranging. Here, we demonstrate a hybrid photonic integrated laser that exhibits very narrow intrinsic linewidth of 25 Hz while offering linear, hysteresis-free, and mode-hop-free-tuning beyond 1 GHz with up to megahertz actuation bandwidth constituting 1.6 × 1015Hz/s tuning speed. Our approach uses foundry-based technologies - ultralow-loss (1 dB/m) Si3N4photonic microresonators, combined with aluminium nitride (AlN) or lead zirconium titanate (PZT) microelectromechanical systems (MEMS) based stress-optic actuation. Electrically driven low-phase-noise lasing is attained by self-injection locking of an Indium Phosphide (InP) laser chip and only limited by fundamental thermo-refractive noise at mid-range offsets. By utilizing difference-drive and apodization of the photonic chip to suppress mechanical vibrations of the chip, a flat actuation response up to 10 MHz is achieved. We leverage this capability to demonstrate a compact coherent LiDAR engine that can generate up to 800 kHz FMCW triangular optical chirp signals, requiring neither any active linearization nor predistortion compensation, and perform a 10 m optical ranging experiment, with a resolution of 12.5 cm. Our results constitute a photonic integrated laser system for scenarios where high compactness, fast frequency actuation, and high spectral purity are required.

     
    more » « less